

1 A. Wotja 24 Audio Engine

The Wotja Audio Engine ("WAE") is a powerful MIDI-driven audio/sound engine. It comprises many Synth (TG), FX and Controller (Ctrl) units. These can be combined into complex SFX Networks.

Current version | 24 Feature Set | Standalone WAE Guide | ⚠ WAE Guide PDF > ☐ Doc Archive

New in Wotja 24

- Macro Oscillator 2 (TG)
- Resonator (TG)
- Wavetable (TG) SoundFont 3 support (Ogg files) + more SoundFonts

WAE Units (see Synth & FX Editor)

Looking for something?: Try page search with Cmd+F/Ctrl+F.

Synth (TG) (Audio-rate)

- DSynth
- Macro Osc 1
- Macro Osc 2
 (W24)
- Oscillator
- Particle
- Resonator (W24)
- Sample Player
- Wavetable (W24)
- Junction

FX (Audio-rate)

- Amplifier
- Chorus
- Compressor
- Delay
- Distortion
- Equaliser
- Filter
- Overdrive
- Pitch Shifter
- Reverb 1
- Reverb 2XL
- Junction

Controllers (Ctrl-rate)

- Amp
- Envelope
- LFO
- Junction

♣ ■ DSynth (TG)

DSynth - Tone Generator Click image for large

To build WAE networks see Synth & FX Editor.

The DSynth tone generator unit can be used either as a melodic tone generator or as a Drum/Percussion Synthesizer for a range of drum/percussion related sounds. You can shift the pitch of the generated sound away from the notes that would otherwise be played, using the Tuning controls.

The unit works by combining two Oscillators which cross-modulate each other's oscillation frequency. Each oscillator has its own ADSR envelope which is used primarily to modulate the volume of the oscillator, but which can **also** be used to modulate the frequency of the oscillator!

The output of the two oscillators is merged with the output from a filtered noise generator (the bottom block of parameters) which also has its own ADSR envelope. The net effect is a unit which can create a wide array of percussive and melodic sounds. You can use the Export and Import buttons at the top of the unit to export and import DSynth settings to/ from the clipboard.

Tip: Use an audio junction unit to add together sounds from multiple tone generators to make even richer sounds!

- Bypass?: When this is checked the unit is bypassed.
- Level: Sets the unit's output level.

- Pan: Sets the unit's stereo position.
- **Notes?:** This toggle determines whether the unit will actually use the composed note frequency to override the frequency of Oscillator 1. The default is that the checkbox is clear: i.e. the system will **not** use the composed note frequency for the unit. **Tip**: for percussive sounds, you might like to try clearing this checkbox!
- **Click?:** Use this toggle to add an initial transient when the notes are triggered; very useful for percussive sounds.

Oscillator 1 and Oscillator 2 Parameters

- **Frequency:** The frequency of oscillator 1 or 2.
- **OMod:** "Oscillator Modulation" The amount of modulation provided by the other oscillator, for oscillator 1 or 2.
- **EMod:** "Envelope Modulation" the amount of the envelope which should also be used to modulate the frequency of oscillator 1 or 2. If this is set to 0, then the ADSR envelope is used purely to modulate the volume of the oscillator.
- **Delay:** The length of time it takes after a note event occurs for the voice, before the envelope starts to rise-up from zero to its Attack level.
- **Attack:** The length of time it takes after the delay time has passed for the voice, for the envelope to rise-up from zero to its Attack level.
- **A Level:** The target Attack Level for the attack stage of the envelope, as the envelope rises from its initial value of zero.
- **Decay:** The length of time it takes for the envelope to decay down from the Attack Level, down to the Sustain Level of zero.
- **Rate:** A measure of the curvature of the Decay, down to the sustain level of zero. A value of 0 gives a linear decay, and increasing values giving an increasing level of curvature resulting in a sound that is more "plucked" in nature.

Filter/Q Parameters

- **Type List:** The filter type to use: includes Low Pass, High Pass and Band Pass.
- **Frequency:** The frequency of the filter.

- **Q:** the amount of accentuation of the filter, 1.0 is high, 0.0 is no effect at all.
- **EMod:** "Envelope Modulation" the amount of the envelope which should also be used to modulate the filter frequency. If this is set to 0, then the ADSR envelope is used purely to modulate the volume of the filtered noise..
- **Delay:** The length of time it takes after a note event occurs for the voice, before the envelope starts to rise-up from zero to its Attack level.
- **Attack:** The length of time it takes after the delay time has passed for the voice, for the envelope to rise-up from zero to its Attack level.
- A Level: The target Attack Level for the attack stage of the envelope, as the envelope rises from its initial value of zero. Tip: A value of zero is very good for melodic sounds; set to a higher value for more percussive sounds.
- **Decay :** The length of time it takes for the envelope to decay down from the Attack Level, down to the Sustain Level of zero.
- **Rate:** A measure of the curvature of the Decay, down to the sustain level of zero. A value of 0 gives a linear decay, and increasing values giving an increasing level of curvature resulting in a sound that is more "plucked" in nature.

Tuning

- **Octave offset:** This allows you to specify the the octave offset from the voice's pitch.
- **Semitone:** This allows you to select the semitone offset from the voice's pitch (taking into account the octave offset above).
- Micro: This allows you to specify the microtonal offset in order to 'detune' the tone. -100 is the equivalent to a semitone down, and +100 is a semitone up.

Macro Oscillator 1 -Tone Generator Click image for large To build WAE networks see Synth & FX Editor.

This very powerful and complex modular synth unit is a port of the popular open-source "Braids" sound generator from Mutable Instruments (the github is here).

For information on its capabilities see the Mutable Instruments Documentation and/or PDF quickstart. You may also wish to look at the excellent

http://www.vo1t.com/Euro/BraidsIllustrated1.8.pd f.

The best way to experiment with it is to load one of the many "MO1-Lead" patches that can be found from the Presets button.

As with any other WAE TG Unit it is a sound source for notes generated by the WME. This means it can be used polyphonically (you can set the polyphony required via the top Poly button in the Synth & FX Editor).

It can also be modulated via other control-rate units (LFO and Envelope modulators are shown in the screenshot) and can be used in a WAE Sound Network in combination with other TG and Control units.

Macro Oscillator 1 - Tone Generator (Audio-rate)

- Bypass?: When this is checked the unit is bypassed.
- **Shape:** Choose from 47 different algorithms.
- Timbre: Sets a value for the algo's timbre.

- **Color.:** Sets a value for the algo's color.
- Level: Sets the unit's output level.
- Pan: Sets the unit's stereo position.

Tuning

- **Octave offset:** This allows you to specify the octave offset from the generator's pitch.
- **Fine:** This allows you fine control over the pitch.
- Coarse: This allows you coarse control over the pitch.

Edit Envelope

The MO1 has its own integral envelope unit with the same capabilities as the Ctrl Envelope Unit.

- Delay: The length of time it takes after a note on event occurs for the voice, before the volume envelope starts to rise-up from zero to its Attack level.
- **Attack:** The length of time it takes after the delay time has passed for the voice, to rise-up from zero to its Attack level.
- **Atk Level (Advanced):** The target level for the attack stage of the envelope, as the envelope rises from its initial value of zero.
- **Hold:** The length of time it takes after the attack level is reached, before the envelope starts to decay down to the Sustain Level.
- **Decay:** The length of time it takes for the envelope to decay down from the Attack Level, down to the Sustain Level.
- **Sustain:** The level at which the note will play, once all of the Decay, Attack, and Hold periods have completed.
- Post Attack (Advanced): The length of time it takes after the note stop event occurs, for the envelope to move from the sustain level to the post-attack level
- Pst Atk Level (Advanced): The target level for the post-attack stage of the envelope, as the envelope moves from its sustain level.
- **Post Hold (Advanced):** The length of time it takes after the post attack level is reached, before the envelope starts to decay down to

zero.

• **Release:** This time defines the time it takes for the Voice to respond to a note off event, in terms of how long it takes to decay from the Post-Attack Level to a level of zero.

Macro Oscillator 2 (TG) (W24)

Macro Oscillator 2 -Tone Generator Click image for large

To build WAE networks see Synth & FX Editor.

The MO2 unit is new to Wotja 24 and is a tone generator that is used in a Wotja Synth FX chain.

It is based on the open-source 'Plaits' tone generator module by Mutable Instruments. For full details on how it works please refer to the Plaits documentation .

MO2 contains a larger number of waveform synthesis models, which cover a wide range of techniques. Every model is controlled by just two primary parameters, which are Timbre and Color.

The best way to experiment with it is to load one of the many 'MO2-' patches that can be found from the Presets button.

As with any other WAE TG Unit it is a sound source for notes generated by the WME. This means it can be used polyphonically (you can set the polyphony required via the top Poly button in the Synth & FX Editor).

It can also be modulated via other control-rate units (LFO and Envelope modulators are shown in the screenshot) and can be used in a WAE Sound Network in combination with other TG and Control units.

A note on Odd and Even

 Odd and Even are two complimentary components of the overall output - think of them as abstract names; they sound a little different, and can be combined as you wish, using the Odd and Even Level and Odd and Even Pan sliders.

Macro Oscillator 2 - Tone Generator (Audio-rate)

- **Bypass?:** When this is checked the unit is bypassed.
- **Model:** Depending on which model you select, the nature of the other sliders changes. Choose from 15 different algorithms.
 - 1. Model: Pair of classic waveforms
 - HARM: detuning between the waves
 - TIMBRE: variable square
 - MORPH: variable saw
 - AUX: sum of two waveforms
 - 2. Model: Waveshaping oscillator
 - HARM: waveshaper waveform
 - TIMBRE: wavefolder amount
 - MORPH: waveform asymmetry
 - AUX: variant curve
 - 3. Model: Two operator FM
 - HARM: frequency ratio
 - TIMBRE: modulation index
 - MORPH: feedback
 - AUX: sub-oscillator
 - 4. Model: Granular formant oscillator
 - HARM: frequency ratio
 - TIMBRE: formant frequency
 - MORPH: formant width and shape
 - AUX: filtered waveforms
 - 5. Model: Harmonic oscillator
 - HARM: bumps in spectrum
 - TIMBRE: index of prominent harmonic
 - MORPH: bump shape

AUX: subset of harmonics

6. Model: Wavetable oscillator

HARM: bank selection

■ TIMBRE: row index

MORPH: column index

AUX: low-fi (5-bit)

7. Model: Chords

HARM: chord type

TIMBRE: chord inversion & transposition

MORPH: waveform

AUX: chord root

8. Model: Vowel and speech synthesis

HARM: crossfades

TIMBRE: species selection

MORPH: phoneme or word segment

AUX: unfiltered vocal cords

9. Model: Granular cloud

■ HARM: pitch randomization

■ TIMBRE: grain density

MORPH: grain duration / overlap

AUX: variant sine wave

10. Model: Filtered noise

HARM: filter response

TIMBRE: clock frequency

MORPH: filter resonance

AUX: variant 2 BPF

11. Model: Particle noise

HARM: frequency randomization

TIMBRE: particle density

MORPH: filter type

AUX: raw dust noise

12. Model: Inharmonic string modeling

- HARM: inharmonicity / material selection
- TIMBRE: excitation brightness / dust density
- MORPH: decay time (energy absorption)
- AUX: raw exciter signal
- 13. Model: Modal resonator
 - HARM: inharmonicity / material selection
 - TIMBRE: excitation brightness / dust density
 - MORPH: decay time (energy absorption)
 - AUX: raw exciter signal
- 14. Model: Analog bass drum model
 - HARM: attack sharpness & overdrive
 - TIMBRE: brightness
 - MORPH: decay time
 - AUX: -
- 15. Model: Analog snare drum
 - HARM: balance of harmonic / noise
 - TIMBRE: balance of drum modes
 - MORPH: decay time
 - AUX: -
- 16. Model: Analog hi-hat
 - HARM: balance of metallic / filtered noise
 - TIMBRE: high-pass filter cutoff
 - MORPH: decay time
 - AUX: -
- Harm: See above for the selected model.
- **Timbre:** See above for the selected model.
- Morph: See above for the selected model.

Level

- Main Level: Sets the main level.
- AUX Level: See above 'AUX:' for what this means according to the selected Model.

Overall Level: Sets the overall level.

Pan

- Main Pan: Sets the main pan.
- Aux Pan: See above 'AUX:' for what this means according to the selected Model.
- Overall Pan: Sets the overall pan.

Tuning

- **Octave offset:** This allows you to specify the octave offset from the generator's pitch.
- **Fine:** This allows you fine control over the pitch.
- Coarse: This allows you coarse control over the pitch.

Edit Envelope

The MO2 has its own integral envelope unit with the same capabilities as the Ctrl Envelope Unit.

- Delay: The length of time it takes after a note on event occurs for the voice, before the volume envelope starts to rise-up from zero to its Attack level.
- **Attack:** The length of time it takes after the delay time has passed for the voice, to rise-up from zero to its Attack level.
- **Atk Level (Advanced):** The target level for the attack stage of the envelope, as the envelope rises from its initial value of zero.
- **Hold:** The length of time it takes after the attack level is reached, before the envelope starts to decay down to the Sustain Level.
- **Decay:** The length of time it takes for the envelope to decay down from the Attack Level, down to the Sustain Level.
- **Sustain:** The level at which the note will play, once all of the Decay, Attack, and Hold periods have completed.

- **Post Attack (Advanced):** The length of time it takes after the note stop event occurs, for the envelope to move from the sustain level to the post-attack level
- Pst Atk Level (Advanced): The target level for the post-attack stage of the envelope, as the envelope moves from its sustain level.
- **Post Hold (Advanced):** The length of time it takes after the post attack level is reached, before the envelope starts to decay down to zero.
- **Release:** This time defines the time it takes for the Voice to respond to a note off event, in terms of how long it takes to decay from the Post-Attack Level to a level of zero.

♣ Osc (TG)

Osc - Tone Generator Click image for large

To build WAE networks see Synth & FX Editor.

This unit lets you create a range of waveforms, which are driven by MIDI pitch (via the "Pitch" checkbox); in which case, they are flexible, efficient MIDI tone generators.

Tip: You can use an audio junction unit to add together sounds from multiple tone generators to make even richer sounds!

Tip: The integrated Envelope (Crtl) Unit is there to help you shape your sound.

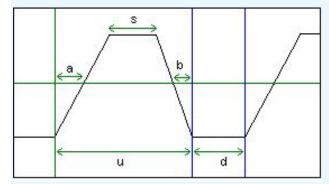
Osc - Tone Generator (Audio-rate)

- **Bypass?:** When this is checked the unit is bypassed.
- **Amplitude:** Sets the amplitude of the generated waveform.
- Pan: Sets the unit's stereo position.
- **Use MIDI Pitch?**: Select this checkbox if you want the MIDI pitch to determine the frequency of this tone generator. Use only for audio-rate units.
- **Frequency:** This controls the frequency of the unit, in Hertz (Hz, cycles per second).
- **Portamento:** This defines the amount of "pitch slide" (Portamento) from one note to the next; used when "Use Midi Pitch?" is selected. Basically a measure of the exponential approach to the pitch of the next note. Measured from 0 (minimum effect, an instantaneous change to the next note pitch) to 100 (maximum exponential approach to the target pitch).

Envelope

• Edit Envelope: The Osc Unit has an integrated Envelope. See the

Envelope (Crtl) Unit.


Note Sync?: Select this checkbox if you want the LFO to use the
envelope to modulate the amplitude of the tone generator, or your own
specific envelope settings that you can edit by pressing the "Edit
Envelope" button. This only has any effect in Modular Synth networks,
of course!

Type

- **Oscillator Type:** This list includes Sine, Saw left, Saw right, Triangle, Square, STS (Saw, Triangle, Square) and Random. Change the Oscillator Type to dramatically change the sound of your Tone Generator.
 - **Sine** produces a smooth waveform with no other harmonics.
 - Saw Left and Saw Right produce waves that look like a saw-tooth close up. The either slope to the left or to the right, but sound identical (they are both provided, as combining these with other waveforms provide interesting effects due to their different phasing!).
 - **Triangle** sounds not quite as harsh as the saw-tooth but has more harmonics than the sine.
 - Square produces a 'square' looking wave and sounds rougher than
 either the sine or saw-tooth waves. With the square wave you have
 the option of specifying the ratio of the up portion of the wave to
 the down portion. At either extreme, the square wave becomes
 more like a pulse wave, giving a 'pulsing' sound at lower pitches.
 - STS stands for 'Saw, Triangle, Square' because it is a hybrid between these three wave types. By varying the three parameters associated with it, the wave shape can be 'morphed' between the above three extremes. In effect, this waves covers all the preceding wave shapes, with the exception of the sine wave.
 - Random produces white noise between Min and Max, also affected by the Amplitude. These values are produced irrespective of the pitch of the tone generator; and do not use the envelope of the tone generator. Random signals are particularly interesting when fed into filter effect units!

- **Min**: This defines the minimum value that the generated LFO waveform can have.
- **Max**: This defines the maximum value that the generated LFO waveform can have.
- **Phase**: Useful for slow oscillators (e.g. 0.2 Hz) determines the start point of the oscillator.
- **Ring Modulator?**: Ring mod output is the sum and the difference of two inputs. Checking this binds together the output of 2 TG Osc units (they must be next to each other in the network). The input signal from the first TG Osc unit is multiplied by its the Oscillator signal of the second. Example: If you Ring Mod 2 sine oscillators set to the same pitch then the output is a sine wave pitched up an octave (the sum) plus silence (the difference).

STS

The STS Waveform and its ratios

- **Up/Down Ratio**: Only for the **Square** and **STS** wave types. Defines the ratio of "Up" to "Down" (or "On" to "Off") values (for STS waveforms, this is the ratio of *u* to *d* in the diagram below).
- **Square Ratio**: Only for the **STS** wave type. Defines the "squareness" of the waveform (the ratio of s to u in the diagram below).
- **Slant Ratio**: Only for the **STS** wave type. Defines the skew of the waveform (the ratio of a to a + b in the diagram below)
 - With the Up Down Ratio at 100.0%, the Squareness Ratio at 0.0% and the Slant Ratio at 50.0%, the shape is a triangle.
 - With the Up Down Ratio at 100.0%, the Squareness Ratio at 0.0% and the Slant Ratio at 0.0% or 100.0%, the shape is a Saw Right or Saw Left respectively.

 Lastly, with the Up Down Ratio at 100.0%, the Squareness Ratio at 100.0% and the Slant Ratio at anything you please, the shape is a Square wave.

♣ Particle (TG)

Particle - Tone Generator Click image for large

To build WAE networks see Synth & FX Editor.

This effect unit is an example of Granular Synthesis, which although is often used to do time stretching of samples, is used for a completely different purpose here - that of creating rich layered sounds ranging from ambient forms to plopping sounds and twinkling chimes. The particle system incorporates octave, semitone and micro tonal offsets.

The Particle System synthesizes tones from a number of sine waves. This is really granular "additive synthesis". The unit works by streaming-out grains up to a maximum of 20 at any one time. These are randomly offset from each other to blend well. When the effect decides to generate a new grain, it takes its information from the dialog values. If the grains are reasonably large then the harmonics come in and out giving a full sound.

Tip: You can use an audio junction unit to add together sounds from multiple tone generators to make even richer sounds!

Particle - Tone Generator (Audio-rate)

- **Bypass?:** When this is checked the unit is bypassed.
- **Harmonics:** Defines the range of multiples of the selected frequency present in the Particle System's output. What this means in plain English:) is that if you (say) have a frequency of 400Hz, and you define the Harmonic to be 3, then you may find grains with frequencies of 400, 800, and 1200 Hz in the generated waveform. The higher this


value, the richer the harmonic output!

- **Pitch Velocity:** this scrollbar controls the change of Pitch **within** any one grain. Try moving this a small bit and you will find the tones start to dive or soar good for creating horror effects!
- **Elements:** The "number of elements" the maximum number of grains present at any one time. The higher this value, the richer the output!

Envelope

- **Amplitude**: Defines the overall amplitude of the generated waveform.
- Attack / Sustain / Decay / Pause: Changing these settings modifies
 an internal envelope generator, which is used to alter the shape and
 duration of the grains. It is easy to get twinkling effects just by making
 the attack small (say 1) and the decay longer (say 200). The pause
 determines the gap between grains. Modulating harmonic, attack, and
 pan position gives a nice full sound that alternates between twinkling
 and blending.

Resonator (TG) (W24) [Experimental]

Resonator - Tone Generator Click image for large To build WAE networks see Synth & FX Editor.

The Resonator unit is primarily a modal resonator, used to resonate the audio from the unit that precedes it in a Wotja Synth FX chain. The Resonator unit was first introduced in Wotja 24.

The Resonator can be run according to various Models; and in addition to the modal resonator, conains a sympathetic strings simulator, and a modelled non-linear string simulator.

Note: this unit is based on the Rings effect unit by Mutable Instruments. The documentation for Rings is here:

https://pichenettes.github.io/mutable-instruments-

documentation/modules/rings/manual/

A note on Odd and Even

 Odd and Even are two complimentary components of the overall output - think of them as abstract names; they sound a little different, and can be combined as you wish, using the Odd and Even Level and Odd and Even Pan sliders.

Particle - Tone Generator (Audio-rate)

- Bypass?: When this is checked the unit is bypassed.
- Model: Choose from 6 different options:
 - Modal resonator
 - Sympathetic strings

- Modulated/inharmonic string
- FM voice
- Quantized sympathetic strings
- Reverb string
- **Structure:** For most cases this defines the spectral content of what you hear. For the Sympathetic strings option, this property actually controls the intervals between strings.
- **Brightness:** This lets you control the brightness of the generated sound.
- **Damping:** This lets you define the damping rate; i.e. how long it takes for the sound to dampen off.
- Position: This defines a phase offset into which the Structure is excited by note triggers.

Level

- Input Level: Sets the input level.
- Odd Level: See comment above on Odd and Even.
- Even Level: See comment above on Odd and Even.
- Overall Level: Sets the output level.

Pan

- Odd Pan: See comment above on Odd and Even.
- Even Pan: See comment above on Odd and Even.
- Overall Pan: Sets the overall pan.

Tuning

- **Octave offset:** This allows you to specify the octave offset from the generator's pitch.
- Fine: This allows you fine control over the pitch.
- Coarse: This allows you coarse control over the pitch.

Edit Envelope

The Resonator has its own integral envelope unit with the same capabilities as the Ctrl Envelope Unit.

- Delay: The length of time it takes after a note on event occurs for the voice, before the volume envelope starts to rise-up from zero to its Attack level.
- **Attack:** The length of time it takes after the delay time has passed for the voice, to rise-up from zero to its Attack level.
- **Atk Level (Advanced):** The target level for the attack stage of the envelope, as the envelope rises from its initial value of zero.
- **Hold:** The length of time it takes after the attack level is reached, before the envelope starts to decay down to the Sustain Level.
- **Decay:** The length of time it takes for the envelope to decay down from the Attack Level, down to the Sustain Level.
- **Sustain:** The level at which the note will play, once all of the Decay, Attack, and Hold periods have completed.
- Post Attack (Advanced): The length of time it takes after the note stop event occurs, for the envelope to move from the sustain level to the post-attack level
- Pst Atk Level (Advanced): The target level for the post-attack stage of the envelope, as the envelope moves from its sustain level.
- **Post Hold (Advanced):** The length of time it takes after the post attack level is reached, before the envelope starts to decay down to zero.
- **Release:** This time defines the time it takes for the Voice to respond to a note off event, in terms of how long it takes to decay from the Post-Attack Level to a level of zero.

♣ Sample Player (TG)

Sample Player - TG Click image for large

To build WAE networks see Synth & FX Editor.

The modulatable & polyponic Sample Player plays built-in ogg/WME Template file data and can only be used in a Synth Network.

Interesting looping effects can be explored with its support for (MIDI & Controller) pitch shifting, direction reverse and several loop/play modes as well as an optional built-in envelope.

By default, the Sample Player plays your sample data at its original pitch. However, all the Pitch controls below combine together to change this.

The higher the pitch, the faster the sample plays through. The lower the pitch, the slower the sample plays through. Use the envelope if you want to shape the sound.

Use of Polyphony in Looping modes (i.e. when not MIDI Note Triggered): This is experimental. When POLY is > 1 a "Round Robin" approach used to cycle around MIDI notes as they arrive.

- **Bypass?:** When this is checked the unit is bypassed.
- **Level**: Determines the amount of amplification to be done by this amplifier unit. Values can range from -∞ dB (value: 0), then approx -19.00 dB (value: -0.11) up to +20.00 dB (value: 10). The default setting is 0 dB (value: 1) i.e. no amplification.
- **Pan**: Determines the pan position of the signal. The default value is 64 (center).

Load source data...:

- Press button to browse in the Wotja folder for an audio sample (.Ogg format file) or a WME Template.
- If you use built-in sample data:
 - We don't save the audio data to the mix file which saves a lot of space and keeps things fast.
 - We save just the internal source path so we can get the data when we need it for sample data from your Documents folder.
- If you embed sample data (load an ogg file from the file system):
 - In the mix file we save the audio data used in the SFX Network (in addition to the original document path/name); this makes the mix file larger (of course!) and slows document processing as the ogg data has first to be expanded into memory to be used.
- If you use a WME Template (and we believe this synthesis approach is unique to Wotja):
 - We "cook" it to an in-memory audio file using our "cooker" approach (note that the longer the recording or more complex the Template, the longer this takes);
 - We cache results so it works consistently in poly system, meaning that the same recording is used across changes in "owning" networks even as you edit them.
 - Cooked recordings are regenerated on mix/album etc. restart (which, if you are using a generative template, means the recording can be different each time!).
- "Pak: value..." or "Stored in mix": This non-editable field tells you about the audio sample that you're using, and the Pak (if any) it is loaded from.
- Template Size (re-play the mix to apply): Use this to define the "cooked" duration for WME Template-derived audio from 1 to 20 seconds
- **Export source data...**: Depending on what type the data is, exports it to an Ogg file (whether or not the sample is loaded from a Pak or is embedded in the mix) or a Template.

Triggering/Looping

Mode:

- MIDI Note Triggered Normal
 - The sample only plays when triggered by a MIDI Note On and stops on a MIDI Note Off.
- MIDI Note Triggered Pendulum
 - The sample only plays when triggered by a MIDI Note On and plays from start to end and then reverses until stopped with a MIDI Note Off. Use the envelope if you want to shape the sound.

Looping - Normal

- If Envelope is OFF when the Cell starts to play then the loop plays from start to end and then restarts from the start and keeps on looping. If you're playing in Reverse (using the Direction slider), your audio loop will simply loop in the opposite direction.
- *If Envelope is ON* when the Cell starts to play then the sample does not start playing/looping until receipt of first MIDI note.
 - Note: If HOLD and DECAY have some values then note decays after the the HOLD value, down to the SUSTAIN value and stays there (whatever that is), If SUSTAIN is 100% then it will play at that level for the note duration (which could be v long) whatever HOLD/DECAY is used.
- Note: If "Use MIDI Pitch" is ON is the sample is pitch shifted on receipt of MIDI notes.

· Looping - Pendulum

- As above, but the loop plays from start to end and then reverses until it reaches the beginning and keeps looping like that.
- See also Envelope behaviour for Looping Normal.

One Shot

■ The sample is triggered to play when the Cell starts and plays through to the end only once. This is useful for foley sounds and in conjuction with the Track Play Type "One Shot".

- You can extend how long it plays for by using modulation to change its direction as it plays.
- **Direction:** -1 to +1;
 - 0 and up means forwards, less than zero is backwards (it is like a bias for modulation where the "final value" defines the direction to use at that point in time); modulateable e.g. with any Controller Unit.
 - Normally the selected sample plays in the "normal" direction i.e. forwards.
 - If you want to hear the sample play in reverse, set the Direction slider to less than zero; or use Mode set to one of the Pendulum modes.

Envelope

- **Edit Envelope**: The Sample Player Unit has an integrated Envelope. See the Envelope (Crtl) Unit.
- **Use Envelope**: Select this checkbox if you want to use the integrated envelope to modulate the output of the Sample Player.

Pitch

- Use MIDI Note Pitch?:
 - Enables (disables) control of the Semitone offset via incoming MIDI Note On events from the Generator(s) attached to that MIDI Channel.
- Semitone: Offset +- semitone shift.
- Pitch Fine Pitch offset of +/- 1000 cents; modulatable with any Controller Unit.

MIDI Pitch Offset

- MIDI Reference pitch (for interpreting Note On as pitch shift c.f. above - default is 60).
- Adjust the MIDI Reference Pitch to use via the slider (default is 60, which is C4); so a MIDI On event of 61, will shift pitch up by on semitone; and MIDI Note On event of 59, will shift pitch down by semitone.

• **Portamento** Portamento in seconds (0 to 10); modulatable with any Controller Unit. The first half of the slider is used for values from 0.000 to 1.000 seconds; the second half of the slider is used for values from 1.00 to 10.00 seconds.

Wavetable - Tone Generator Click image for large

NEW for W24: SF3 support; 24 IM Strings/E-Piano/Piano Damped SoundFonts

To build WAE networks see Synth & FX Editor.

SF3 is a SoundFont that uses OGG format samples, meaning the SoundFont can be smaller.

The Wavetable Unit is the unit that uses SoundFonts (SF2/SF3). It is also what you use if you want to use your own SF2/SF3, too.

When added to a Synth Network, a Wavetable Unit defaults to use the integral "General MIDI" (GM) SF2 Wavetable and plays Patch "001-Acoustic Grand Piano". To change the Patch select another one in the Patch list.

It is easy to use the other IM-included SoundFont wavetables:

- 24 IM E-Piano W24
- 24 IM Piano Damped W24
- 24 IM Strings W24
- 23 IM Birds Woodland UK
- 22 IM Brush Kit
- 22 IM Drums
- 22 IM E-Perc
- 22 IM Guitar
- 22 IM Hand Perc

- 22 IM E-Piano
- 22 IM Piano
- 22 IM Synths
- 22 IM World Instruments
- 00 IM Calm
- 00 IM NT2-MT6
- 00 IM NT3-MT7

Simply use the left list control to select the Wavetable from the list of those shown and then use the right hand list control to select the Patch (all patches available in the Wavetable are listed; they are listed in standard patch bank/patch order).

To use your own or 3rd party SF2/SF3, they just first need to be put in the right place (see: The "Wotja Folder" - Where is it and when should I use it?).

Note: If a Wavetable Unit is used in a Synth Network for a MIDI line, its Wavetable and selected patch will override the underlying piece's WME General MIDI Patch parameter (which always uses that patch in the GM Wavetable). If you DO want to use the piece's WME General MIDI Patch parameter setting, you must DELETE all units in the Synth Network and select the OK button to accept that. If you then re-enter the Synth Network you see a Wavetable Unit looks to have been added. It is a placeholder but it is not used - unless you enter the Wavetable unit in which case the sound will default to a GM Piano sound until you change it.

Top Tip: There are 4 parameters in the Wavetable unit that can be modulated:

Frequency, Portamento, Amp and Pan. Try using a LFO Unit to modulate the Wavetable Unit's frequency parameter to apply a vibrato effect. To change how that vibrato is applied over time, try shaping the output of the LFO with an Envelope Unit before feeding into the Wavetable Unit.

Tip: You can use an audio junction unit to add together sounds from multiple tone generators to make even richer sounds.

Wavetable - Tone Generator (Audio-rate)

- Bypass?: When this is checked the unit is bypassed.
- Amp: Used to set the unit's output level.
- Pan: Used to set the unit output's pan position.
- **Ove**: This allows you to specify the the octave offset from the voice's pitch. *NB*: To see this control you need to scroll down the top area.
- **Semi**: This allows you to select the semitone offset from the voice's pitch (taking into account the octave offset above). *NB: To see this control you need to scroll down the top area.*
- **Micro:** This allows you to specify the microtonal offset in order to 'detune' the tone. -100 is the equivalent to a semitone down, and +100 is a semitone up.

Selector List


- Wavetables List (left): Used to select the Wavetable.
- Patches List (right): Used to select the Patch in the Wavetable.
- **Randomize button (top right in Patches list)**: Randomly selects one of the Patches from the currently selected Wavetable.

Bottom Toolbar

• **Envelope Toggle**: If on, the settings of the integral Envelope are applied. If off, the envelope values are ignored.

• **Envelope**: The Wavetable unit has an integrated **Envelope Unit** which can be used to shape it's sounds. This is a very powerful feature that can be used for sound design (e.g. long attack and post release sounds).

Amp - FX
Click image for large

To build WAE networks see Synth & FX Editor.

If you have a weak signal, e.g. coming out from a Filter Unit or an Wavetable Unit, then pump it into an amplifier. The Amplifier can multiply the input by a factor of up to 10. If you want more than this, feed it into another amplifier!

▲ Amp - FX (Audio-rate)

- Bypass?: When this is checked the unit is bypassed.
- Level: Determines the amount of amplification to be done by this amplifier unit. Values can range from -∞ dB (value: 0), then approx -19.00 dB (value: -0.11) up to +20.00 dB (value: 10). The default setting is 0 dB (value: 1) i.e. no amplification.
- **Pan**: Determines the pan position of the signal. The default value is 64 (center).
- Phase Invert?: When on, the phase of the signal will be inverted.
- Pan Invert?: When on, the pan of the signal will inverted.

Chorus - FX
Click image for large

To build WAE networks see Synth & FX Editor.

Sums the input and duplicates it at varying delay rates with the effect of "thickening" the audio.

The delay time and frequency should be tweaked to give the right feel.

- **Bypass?:** When this is checked the unit is bypassed.
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- **Preset:** Use this to apply a "macro" setting of chorus parameters.
- Rate: A measure of the chorus modulation rate, in Hertz.
- Depth: A measure of the chorus modulation depth, in milliseconds.
- **Feedback:** The amount of Chorus Modulation Feedback to apply, as a percentage from 0 to 100 (which is the maximum).

Compressor (FX)

Compressor - FX Click image for large To build WAE networks see Synth & FX Editor.

Used to help compress the signal in the FX chain.

If you view the compressor behavior as a function of Output (measured in decibels [dB]) against Input (measured in decibels [dB]), the compressor displays three distinct regions of behavior:

- Linear with a slope of 1 up to the Compression Threshold (CT)
- Compressor with a slope of 1/CR (where CR is the Compression Ratio) up to the Limit
 Threshold (LT)
- Limiter with a slope of 0 from the Limit
 Threshold (IT) and beyond

Compressor - FX (Audio-rate)

- Bypass?: When this is checked the unit is bypassed.
- **Gain In:** Input gain setting; defaults to 0 dB.
- **Threshold:** This is the input/output level where the compressor becomes active. Below this level input = output.
- Gain Out: Output gain setting; defaults to 0 dB.
- **Attack:** This determines how quickly the envelope will respond to a positive change in the signal level. The value indicates the time it takes the envelope to rise 50% of the change.
- **Ratio:** Determines the compression ratio. If this value is < 1 it will in effect work as an expander.
- Release: This determines how quickly the envelope will respond to a negative change in the signal level. The value indicates the time it takes the envelope to fall 50% of the change.

- Level Detect Mode: This has one of two values, which determines whether the signal is compressed/limited according to the peak or RMS level of the signal.
- **Limiter:** The output is limited to this level. If this value is lower than dBCompThreshold, the compressor will not be in operation.

Mode

• Peak: Use Peak signal

• RMS: Use RMS signal

♣ Delay (FX)

To build WAE networks see Synth & FX Editor.

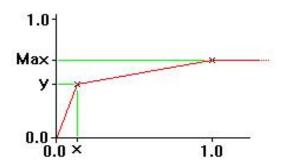
Used to add interesting delay effects to an audio signal.

Delay - FX Click image for large

- **Bypass?:** When this is checked the unit is bypassed.
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- **Time Fine:** This parameter quickly determines the gross delay time in multiples of two. Increasing this parameter by one stop doubles the delay time, decreasing it halves it.
- **Time Multiplier:** This parameter allows the user to fine tune the delay time in between the multiples specified by the parameter above.
- Decay: This determines the amplitude attenuation with each passing delay tap.
- **Taps:** The number of "taps" in the delay system : the greater this number, the greater is the "thickness" of the delay effect.
- Ping Pong Freq: Frequency (Ping Pong) is the movement across the stereo field with each passing delay tap. A high Ping-Pong frequency ensures a 'Ping-Pong' type of effect from one channel to the other. A low frequency results in a type of drift from one channel to the other. Only applies if the Delay is applied to a stereo signal pipeline.
- **Phase:** This simply determines where in the stereo field the Ping-Pong starts. Only applies if the Delay is applied to a stereo signal pipeline.

• **BPM Sync**: Default (non-tempo synced option) and various BPM values, e.g. BPM/4 which means generate the waveform selected in the above list at a tempo of the mix tempo (BPM)/4. This control allows for tempo-synced control of the Delay unit, for great effect.

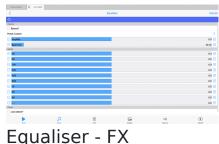
♣ ■ Distortion (FX)



Distortion - FX Click image for large To build WAE networks see Synth & FX Editor.

Distorts the sum of your incoming signals. Take cutoff X right down to about 0.02 to get a really distorted sound - it sounds great on a particle system! Cutoff Y acts like an amp and Cutoff Max determines the position of the output wave when the input is at 1.0 or -1.0.

The combination of Cutoff X, Y and Cutoff Max contribute to reshaping the input signal.


Graph of the Distortion Cutoff parameters

Distortion - FX (Audio-rate)

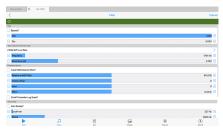
- **Bypass?:** When this is checked the unit is bypassed.
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- Cutoff X: This determines the input value which will be scaled to the output value of 'y'.
- **Cutoff Y:** As above, i.e. at input 'x', 'y' is the output.
- **Cutoff Max:** At input value of 1.0, the output is 'Max'. Max may even be set to be lower than Cutoff Y

♣ Equaliser (FX)

Equaliser - FX
Click image for large

To build WAE networks see Synth & FX Editor.

Use the Equaliser Unit to modify the frequency response of your audio signal. Depending on how you configure the unit, it can operate as either a 5-band or a 10-band equaliser. Note that the 5-band equaliser takes less CPU power.



- **Bypass?:** When this is checked the unit is bypassed.
- **Preset:** Select from a range of presets.
- Amplifier: Specifies the amount of pre-amplification applied to the equaliser input signal. Adjusts from -20 dB to +20 dB.
- Base Freq: This slider adjusts the frequency of the lowest EQ band. All other sliders will automatically follow to maintain the frequency ratio between bands.
- **EQ bands:** Specify the gain for the individual frequency bands. Adjust from -14 dB to +14 dB. Unused frequency bands will display "N/A" in case of 5-band EQ mode, or if band frequencies are close to or above half the sample frequency.

Toolbar

- Lock checkbox: Use to allow all sliders to move together at the same time when you change any one of the individual slider values.
- On/Off checkbox: Use this to enable or disable the EQ

♣ Filter (FX) (UPDATED for V23)

Filter - FX Click image for large

To build WAE networks see Synth & FX Editor.

The Filter Unit can work in a variety of different ways depending on how you configure it:

- Using a fixed filter frequency;
- Using a filter frequency that is adjusted dynamically such that it tracks currently playing note pitches;
- Using a built-in frequency sweep.

- **Bypass?:** When this is checked the unit is bypassed.
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- Type, Frequency, Resonance (Q):
 - Filter Type:
 - 2 Pole SVF: Low Pass (NEW in V23): Powerful smooth, state variable 2 pole filter
 - 2 Pole SVF: High Pass (NEW in V23): Powerful smooth, state variable 2 pole filter
 - 2 Pole SVF: Band Pass (NEW in V23): Powerful smooth, state variable 2 pole filter
 - 2 Pole SVF: Notch (NEW in V23): Powerful smooth, state variable 2 pole filter
 - 4 Pole Classic: Low Pass (NEW in V23): Powerful and resonant 4 pole filter
 - Legacy Low Pass: Less powerful old-style filter (multi-stage)
 - Legacy High Pass: Less powerful old-style filter (multi-stage)

- Legacy Band Pass: Less powerful old-style filter (multi-stage)
- Legacy Notch: Less powerful old-style filter (multi-stage)
- Frequency: Determines the minimum frequency (1 Hz 10 kHz) for the filter (i.e. a Cut-off wrt High Pass and Low Pass). The first half of the slider is allocated to the first 1000 Hz, second half allocated to 1000 to 10000 Hz
- Q: The amount of accentuation (resonance) of the filter, 1.0 is the lowest value, and provides low quality filtering with little resonance, 5.0 provides high quality filtering with high resonance, and 10.0 provides the greatest resonance.

Frequency Options:

- Track MIDI Note On Pitch?: When checked, this toggle allows the Filter frequency to track the MIDI note pitch, where the note is generated by the WME. The Frequency slider setting above is then ignored.
 - Tip: setting this checkbox gives a tonal quality to the Filter effect.
- Relative to MIDI Pitch: Gives an offset to the current note pitch.
- Octave Offset: This combo-box allows you to specify the octave offset from the current note pitch
- **Semi:** This allows you to select the semitone offset from the current note pitch (taking into account the octave offset above).
- Micro: This allows you to specify the microtonal offset in order to 'detune' the filter. The value supplied is in cents (1 cent = 1/100 semitone). Note that the Max cutoff rate after modulation is approximately 2/5 of current system sample rate; so around 19 kHz for 48 kHz; beyond this, the cutoff rate is clamped.
- Cutoff Controller: Log Scale? (NEW in V23): Use for logarithmic control of Frequency via external controller (default is unchecked).
 - Checkbox off (the default case): the Cutoff controller (modulator) is used to directly scale the cut-off frequency.
 Value -& scale factor = 1 + (value/2). Min mod value is -1: scale factor = 0.5 (divide by two, i.e. drop by 1 octave)). Value of 0; scale factor = 1 (keep the same). Value of 2; scale factor = 2

- (up one octave). Min mod value is -1, max is +1; any values outside of this range are clamped.
- Checkbox on: the Cutoff controller (modulator) is used to logarithmically scale the cut-off frequency. So value of 0, keeps as zero. Value of 1, shifts up 1 octave (doubles frequency). 2 shifts up two octaves (quadruples). -1 shifts down one octave (divides frequency by 2). -2 shifts down one octave (divides frequency by 4). No inherent limit of min/max values.

Auto Sweep:

- Auto Sweep?: This toggle determines whether or not the built-in filter frequency is in use. When not selected, this checkbox disables automatic filter sweeping.
- **Cutoff min:** Determines the cutoff or center frequency for the filter in Hertz.
- **Range:** This value, when added to the *Filter Cutoff Min* determines the upper frequency for the built-in filter frequency sweep
- Rate: Determines the rate in Hertz at which the filter sweep moves from minimum to maximum value (and back again) [Auto Sweep? check box must be checked].
- Phase: Determines the phase used by the built-in frequency sweep.
- Sync Auto Sweep to MIDI Note On?: Only relevant when the filter is used on the output of a WAE Synth being driven by a WME Generator.

• Legacy:

 Number of Sections: The number of cascaded 12 dB/octave filter sections used in the Legacy Filter Types, defaults to 1. Use a higher value to get sharper cutoff, at the cost of greater CPU consumption.

To build WAE networks see Synth & FX Editor.

This unit adds overdrive distortion to the sound source.

Overdrive - FX Click image for large

- Bypass?: When this is checked the unit is bypassed.
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- Gain: Determines the amount of overdrive (distortion) applied.

♣ Pitch Shifter (FX)

Pitch Shifter - FX
Click image for large

To build WAE networks see Synth & FX Editor.

This unit is quite a heavy hitter in terms of CPU usage, but it allows the pitch of the input to be live-shifted (there is a small latency) by up to a maximum of \pm 12 semitones.

The parameters that can be modulated (by a control-rate unit) are: Dry, Wet, Pan and Micro.

- **Bypass?:** When this is checked the unit is bypassed.
- **Pitch Shift (semitones):** The amount of pitch shifting you want to occur in semitones (up to +/- 12).
- **Micro:** This allows you to specify the microtonal offset in cents (1 cent = 1/100 semitone).
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- Pan: Adjust this value to alter the pan of the output in the mix.

Reverb 1 (FX)

Reverb 1 - FX Click image for large

To build WAE networks see Synth & FX Editor.

This unit adds reverberation to the sound. This gives depth to the sound and makes it seem as though the piece is being performed in a room. You can control the 'size' and sound of this room with the parameters below.

▲ Reverb 1 - FX (Audio-rate)

- Bypass?: When this is checked the unit is bypassed.
- **Wet:** Adjust this value to alter the amount of "wet" (processed) signal in the mix.
- **Dry:** Adjust this value to alter the amount of "dry" (unprocessed) signal in the mix.
- **Preset:** Select from a range of presets.
- **Time:** Determines the duration of the reverb.
- **HF Damp:** In most environments high frequencies will attenuate more quickly than low frequencies due to damping caused by carpets, furnishings, etc. Use this control to adjust the amount of high frequency damping.
- **Pre Delay:** Delay of reverb relative to the dry (unprocessed) signal.
- **Reverb Type List:** Choose the reverb type from a number of musical and environmental presets.
- Low Cut: Applies a lowpass filter to the reverberated sound. The value is the normalized cutoff frequency of the filter, with "1.00" corresponding to half the sample frequency (at 1.00 no lowpass filtering is applied).
- High Cut: Applies a highpass filter to the reverberated sound. The
 value is the normalized cutoff frequency of the filter, with "1.00"
 corresponding to half the sample frequency (at 0.00 no highpass
 filtering is applied).

- **Combs:** Determines the number of parallel comb filters used in the reverb algorithm. A higher number generates a more dense reverb tail, but is also more CPU intensive.
- **Filters:** Determines the number of series allpass filters used in the reverb algorithm. A higher number generates a smoother reverb tail, but is also more CPU intensive.
- **Stereo:** Adjust this value to change the perceived "width" of the sound.

Reverb 2XL (FX)

Reverb 2XL - FX Click image for large

To build WAE networks see Synth & FX Editor.

This unit is a heavy hitter in terms of CPU usage (much heavier than the Reverb 1 unit) but it adds a complex reverberation to the sound giving it a deep richness. There are many parameters to explore and many effects that can be achieved - including even chorus and delay!

For the simplest level of control, check out the sliders in the Output Section. "Dry Signal Out" means the unprocessed input, and "Input Section Out" is the unprocessed input but with e.g. some pre-delay or Low or High cut. The Early and Late Reflections sliders control the depth of the reverb and so can make the biggest difference.

The unit is based on the Cloud Seed Reverb unit, see the link for full documentation.

Reverb - FX 2XL (Audio-rate)

- **Bypass?:** When this is checked the unit is bypassed.
- Preset: Select from a range of included presets.
- Input Section:
 - L/R Cross-Blend (0-1):
 - Pre Delay (0-1000 ms):
 - Low Cut Enabled?:
 - Low Cut (0-1):
 - High Cut Enabled?:
 - High Cut(0-1):
- Output Section:
 - Dry Signal Out (0-1):

```
Input Section Out (0-1):
   Early Reflections Out (0-1):
   Late Reflections Out (0-1):
   • Interpolation?:

    Equalization:

   • Low Shelf Enabled?:
   Low Shelf Frequency (0-1):
   Low Shelf Gain (0-1):
   • High Shelf Enabled?:
   High Shelf Frequency (0-1):
   High Shelf Gain (0-1):
   • Cutoff Enabled?:
   LP Cutoff Frequency (0-1):
   Stereo Width (0-1):

    Early Reflections - Delays:

   Tap Count (0-1):

    Tap Length (0-500ms):

   Tap Gain (0-1):

    Tap Decay (0-1):

   Tap Scheme (0-1m):

    Early Reflections - Diffuser:

   • Enabled?:
   Delay (0-1):
   • Feedback (0-1):

    Mod Amount (0-2.5):

   Mod Rate (0-1):
   Stages (0-8):

    Diffusion Scheme (0-1m):

    Late Reverberation:

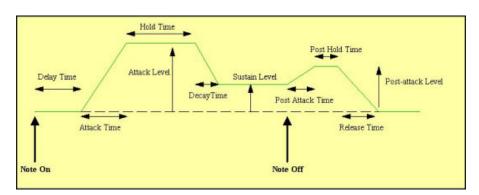
   Lines in Parallel (1-12):

    Late Reverberation - Delay:

   • Time (0-1):
```

```
Line Decay (0-500ms):
Mod Amount (0-2.5):
Mod Rate (0-1):
Tap: Pre/Post (on = Pre; off = Post)?:
Delay Scheme (0-1m):
Late Reverberation - Diffuser:
Enabled?:
Delay (0-1):
Feedback (0-1):
Mod Amount (0-2.5):
Mod Rate (0-1):
Stages (0-8):
Diffusion Scheme (0-1m):
```

♣ Envelope (Ctrl)


Envelope - Controller Click image for large

To build WAE networks see Synth & FX Editor.

The Envelope Unit is used to edit the "Ctrl-Envelope" control-rate plugin. It is only of use in Modular Synth networks, where it is triggered in response to MIDI note on events for the current MIDI line, and generates no sound of its own. Used in context of the TG Osc it is also triggered in response to MIDI note off events.

Note: An Envelope Unit can be added to an FX Network, but it cannot be used to modulate an FX and can even mute the sound - so we do not recommend doing it!

There are a number of values which you can adjust to modify the shape of your envelope. The shape used is shown in this diagram below.

Envelope - Controller (Control-rate)

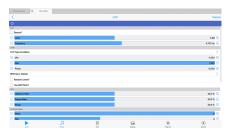
- Delay: The length of time it takes after a note on event occurs for the voice, before the volume envelope starts to rise-up from zero to its Attack level.
- **Attack:** The length of time it takes after the delay time has passed for the voice, to rise-up from zero to its Attack level.

- **Atk Level (Advanced):** The target level for the attack stage of the envelope, as the envelope rises from its initial value of zero.
- **Hold:** The length of time it takes after the attack level is reached, before the envelope starts to decay down to the Sustain Level.
- **Decay:** The length of time it takes for the envelope to decay down from the Attack Level, down to the Sustain Level.
- **Sustain:** The level at which the note will play, once all of the Decay, Attack, and Hold periods have completed.
- **Post Attack (Advanced):** The length of time it takes after the note stop event occurs, for the envelope to move from the sustain level to the post-attack level
- **Pst Atk Level (Advanced):** The target level for the post-attack stage of the envelope, as the envelope moves from its sustain level.
- Post Hold (Advanced): The length of time it takes after the post attack level is reached, before the envelope starts to decay down to zero.
- **Release:** This time defines the time it takes for the Voice to respond to a note off event, in terms of how long it takes to decay from the Post-Attack Level to a level of zero.

Toolbar

- **Reset:** Sets the envelope back to default values.
- **Linear:** This toggle lets you set both Decay and Release stages to either Linear or Exponential.
- **Advanced:** When toggled on, you can see some extra controls, indicated above as "Advanced".

To build WAE networks see Synth & FX Editor.


Amp - Controller
Click image for large

If you have a weak control rate signal, coming from a LFO for example, then pump it into an amplifier. The Amplifier can multiply the input by a factor of up to 10. If you want more than this, feed it into another amplifier!

▲ Amp - Controller (Control-rate)

- **Bypass?:** When this is checked the unit is bypassed.
- Level: Determines the amount of amplification to be done by this amplifier unit. Values can range from -∞ dB (value: 0), then approx -19.00 dB (value: -0.11) up to +20.00 dB (value: 10). The default setting is 0 dB (value: 1) i.e. no amplification.
- **Pan**: Determines the pan position of the signal. The default value is 64 (center).
- Phase Invert?: When on, the phase of the signal will be inverted.
- Pan Invert?: When on, the pan of the signal will inverted.

LFO (Ctrl) (UPDATED for V23) ∴

LFO - Controller Click image for large

NEW for V23:

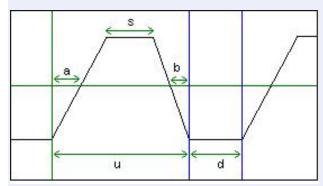
To build WAE networks see Synth & FX Editor.

LFO Type: Euclidian, a classic Euclidean sequence generator with a "Wotja twist". Note: Each "Step" in the Euclidean LFO maps-on to a single Cycle of the LFO. See Euclidian Pattern section.

The LFO unit lets you create a range of controlrate waveforms. The waveforms oscillate at a pitch that you dictate yourself. They are used for modulating the parameters of other effect units; they should only be run below (say) 50Hz or you'll get some odd effects.

LFO - Controller (Control-rate)

- **Bypass?:** When this is checked the unit is bypassed.
- Level: Sets the amplitude of the generated LFO waveform.
- **Frequency:** This controls the frequency of the LFO, in Hertz (Hz, cycles per second).


Type

- **LFO Type:** This list includes Sine, Saw left, Saw right, Triangle, Square, STS (Saw, Triangle, Square) and Random. Change the LFO Type to dramatically change the sound of your LFO.
 - **Sine** produces a smooth waveform with no other harmonics.
 - Saw Left and Saw Right produce waves that look like a saw-tooth close up. The either slope to the left or to the right, but sound identical (they are both provided, as combining these with other waveforms provide interesting effects due to their different phasing!).

- **Triangle** sounds not quite as harsh as the saw-tooth but has more harmonics than the sine.
- Square produces a 'square' looking wave and sounds rougher than
 either the sine or saw-tooth waves. With the square wave you have
 the option of specifying the ratio of the up portion of the wave to
 the down portion. At either extreme, the square wave becomes
 more like a pulse wave, giving a 'pulsing' sound at lower pitches.
- STS stands for 'Saw, Triangle, Square' because it is a hybrid between these three wave types. By varying the three parameters associated with it, the wave shape can be 'morphed' between the above three extremes. In effect, this waves covers all the preceding wave shapes, with the exception of the sine wave.
- Random produces white noise between Min and Max, also affected by the Amplitude. These values are produced irrespective of the pitch of the tone generator; and do not use the envelope of the tone generator. Random signals are particularly interesting when fed into filter effect units!
- Note On Random means that every time a note on event occurs, the random value changes, and sits there until the next note on event occurs. The value then sits there, until the next note on event - when the value is changed again.
- Euclidian (NEW for V23) lets you use the Euclidian Pattern controls to create a control pattern.
- Min: This defines the minimum value that the generated LFO waveform can have.
- Max: This defines the maximum value that the generated LFO waveform can have.
- **Phase:** Useful for slow oscillators (e.g. 0.2 Hz) determines the start point of the oscillator.
- **BPM Sync:** Default (non-tempo synced option) and various BPM values, e.g. BPM/4 which means generate the waveform selected in the above list at a tempo of the mix tempo (BPM)/4. This control allows for tempo-synced control of e.g. the Filter unit, for great effect.
- Random Levels?: When checked, creates random control values bounded between the settings of the Min and Mix knobs. If a BPM

- setting is chosen in the Freq List, then these values will change at that control rate for a "sample and hold" effect.
- **Use MIDI note?:** Applies the waveform each time a MIDI note is played.

STS

The STS Waveform and its ratios

- **Up/Down Ratio**: Only for the **Square** and **STS** wave types. Defines the ratio of "Up" to "Down" (or "On" to "Off") values (for STS waveforms, this is the ratio of *u* to *d* in the diagram below).
- **Square Ratio**: Only for the **STS** wave type. Defines the "squareness" of the waveform (the ratio of s to u in the diagram below).
- **Slant Ratio**: Only for the **STS** wave type. Defines the skew of the waveform (the ratio of a to a + b in the diagram below)
 - With the Up Down Ratio at 100.0%, the Squareness Ratio at 0.0% and the Slant Ratio at 50.0%, the shape is a triangle.
 - With the Up Down Ratio at 100.0%, the Squareness Ratio at 0.0% and the Slant Ratio at 0.0% or 100.0%, the shape is a Saw Right or Saw Left respectively.
 - Lastly, with the Up Down Ratio at 100.0%, the Squareness Ratio at 100.0% and the Slant Ratio at anything you please, the shape is a Square wave.

Euclidian Pattern (NEW for V23)

 Tip: For general details on how a Euclidian generator works, you may also wish to refer to the general overview in the WME Sequence: Euclidian Generator type. • The paramaters below are for use with the LFO Type: Euclidian. See also Euclidian Pattern Ranges and Euclidian Wave Shape.

• Steps (Values 1-8)

- This value determines the number of "steps" there will be in a generated sequence (assuming the Steps Range, below, is 0).
 Empty steps are at Minimum level and filled steps (Fills, below) are at Maximum level.
- Example: If Steps is 8 and Steps Range is 0, the number of steps is always 8.
- Note: If a non-zero Steps Range is specified the number of steps can change every time the next sequence is generated.
- Tip: If you do not want the Steps value to change when the next sequence is generated (see Repeats), ensure Steps Range is set to 0.

• **Fills** (Values 1-8)

- For the generated sequence this value determines how many of the steps above will be "filled" and so play a note (assuming the Fills Range, below, is 0).
- Example: If Fills is 4 and Fills Range is 0, the number of steps that are "filled" is always 4.
- Note: If a a non-zero Fills Range is specified the number of filled steps can change every time the next sequence is generated.
- Tip: If you do not want the Fills value to change when the next sequence is generated (see Repeats), ensure Fills Range is set to 0.

• Rotation (Values 0-16)

- Determines in which step the first note of the sequence will occur (assuming the Rotation Range, below, is 0). This value can be thought of as a "starting offset" if you prefer as the sequence "wraps around" and does not get foreshortened.
- Example: If Rotation is 3 and Rotation Range is 0, the starting note is always in step 3.
- Note: If a non-zero Rotation Range is specified the "starting offset" can change every time the next sequence is generated.

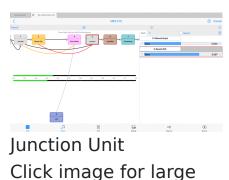
• Tip: If you do not want the Rotation value to change when the next sequence is generated (see Repeats), ensure Rotation Range is set to 0.

• **Repeats** (1-16)

- This value determines how many times a generated sequence will repeat.
- Once the sequence has been repeated the correct number of times a new sequence is generated. This cycle continues until the Sequence Item item is changed or the Generator is stopped.

Euclidian Ranges (NEW for V23)

- *Tip*: For general details on how a Euclidian generator works, you may also wish to refer to the general overview in the WME Sequence: Euclidian Generator type.
- The paramaters below are for use with the LFO Type: Euclidian. See also Euclidian Pattern and Euclidian Wave Shape
- Steps Range (Optional: Values 0-8)
 - Every time a new sequence is generated (see Repeats) the Steps value is recalculated and will be somewhere between Steps + Steps Range.
 - Example: If Steps is 8 and Steps Range is 4, then the next time a sequence is generated the calculated Steps value used could be anywhere between 8 and 8+4 (i.e. between 8 and 20).
- Fills Range (Optional: Values 0-8)
 - Every time a new sequence is generated (see Repeats) the Fills value is recalculated and will be somewhere between Fills + Fills Range.
 - Example: If Fills is 4 and Fills Range is 4, then the next time a sequence is generated the calculated number of Fills used by it could be between 4 and 4+4 (i.e. 8).
- Rotation Range (Optional: Values 0-16)
 - Every time a new sequence is generated (see Repeats) the Rotation value is recalculated and will be somewhere between Rotation + Rotation Range.


- Example: If Rotation is 3 and Rotation Range is 4, then the next time a sequence is generated the calculated Rotation value used could be between 3 and 3+4 (i.e. 7).
- Repeats Range (Optional: Values 0-16)
 - Every time a new sequence is generated the Repeats value is recalculated and will be somewhere between Repeats + Repeats Range.
 - Example: If Repeats is 3 and Repeats Range is 4, then the next time the sequence repeats the calculated Repeats value might be any where between 3 and 3+4 (i.e. between 3 and 7 times).

Euclidian Wave Shape (NEW for V23)

- The paramaters below are for use with the LFO Type: Euclidian. See also Euclidian Pattern and Euclidian Pattern Ranges.
- Use Rise/Hold/Fall ratios to "shape" the waveform!
 - For a very square waveform, set Rise and Fall to small values relative to the Hold value.
 - For a very triangular waveform, set Rise and Fall to large values relative to the Hold value.
- **Use Step Table?**: Checkbox to enable / disable the generated Step table. Note: The generated step table is of most interest when using Euclidean "Repeats".
 - When not using step table, the values are either MIN or MAX.
 - When using step table, the values are:
 - When Euclidean "off" emit MIN
 - When Euclidean "on", use value extracted from a step table that is regenerated on every repeat cycle (which has random value from MIN to MAX)
 - The step table look-up is based on leading edge of the "ON" state. The following diagram should make it fairly clear:
 ++--+--+++----+ >- the filled slots (+ is 1/filled, Step table index to use (increments on 'leading edge')
 0 1 2 3 4

- **Rise Ratio**: The relative amount of time that the waveform spends: "rising" with a slope from minimum up to the maximum.
- **Hold Ratio**: The relative amount of time that the waveform spends: at the "maximum" level.
- **Fall Ratio**: The relative amount of time that the waveform spends: "falling" with a slope from maximum down to the minimum.

To build WAE networks see Synth & FX Editor.

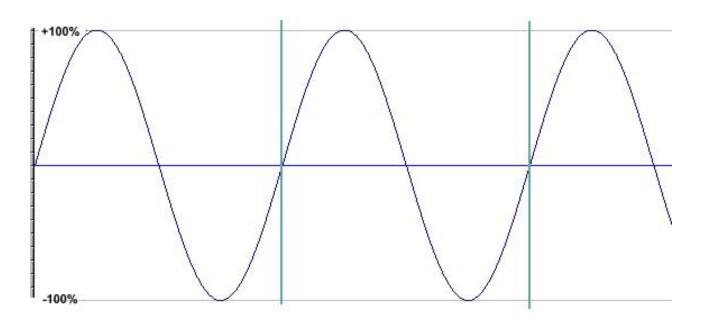
Audio-rate / Control-rate

Junction units are what you use whenever you need to add or combine together the output from two or more units in the system. They are added from the Units drop list below the Chain display. They are shown in grey in the network and have no interface of their own.

There are two types:

- Junction: Audio-rate junctions for Tone
 Generators and FX (and available only in
 Synth networks). Use these when you need
 to add-together outputs from two or more
 audio-rate units. They display in the top
 "audio-rate" line of the network
- **Ctrl-Junction**: Control-rate junctions for Controllers (available in both Synth and FX networks). Use these when you need to add-together outputs two or more control-rate units. They display in the bottom "control-rate" line in the network

When a junction unit is selected in the top
"Chain" display area, a "Connector + Unit"
section displays at the bottom of the Network
Editor screen and which lets you change junction
inputs.



Connector + Unit & Scale: These only show if your currently selected

unit is a audio-rate [audio] junction ("Junction") or a control-rate junction ("Ctrl-Junction").

- **Bypass?:** When this is checked the junction unit is bypassed.
- **Connector**: The "Connector" list shows you a count of all the effects unit inputs that are fed-in to your junction. The numbers in the list are just always numbered automatically from 1 upwards.
- **Unit**: The "Unit" list lets you select the effects unit (which must be a unit at the same rate as the junction!) that is to be added together to help create the output of the junction. Change the entry here to be the unit number of the unit that you want to add with other unit outputs.
- Add: Press the "Add" button to add a new entry to your "Input" list.
- **Delete**: Press the "Delete" button to remove the currently selected Input list item.
- **Scale**: The "Scale" slider lets you fine-tune a scaling factor between -2 and 2, by which the output value of your "input" unit is multiplied, before being added together with the other unit values that are feeding this junction. This allows you to carefully adjust the amount by which a parameter is modulated. Note that if more than one control-rate unit feeds a specific parameter on a target unit, they will get added together automatically (including the appropriate scaling factor); which means that control-rate junctions are not often required. Double tap or right mouse click the Scale slider for a pop-up menu with the following options:
 - Edit: Enter the value you want to use in the pop-up text field.
 - Default: Sets the value to 1.
 - Zero: Sets the value to 0.
 - Random: Sets the value to some random value between -2 and 2.

Synth Tutorial 1

Sine Wave

Introducing sound synthesis

The WAE incorporates a very powerful and flexible software synthesizer. The WAE and its pop-up plugin editors are a new audio application suite, that supports editing of effect plugin settings. The features and flexibility of the WAE are such that, to make the best use of them you will find that a little understanding of the basics of sound synthesis will go a long way.

If you haven't delved too deeply into programming synthesizers before now, or if you fancy a quick refresher course, then this tutorial is for you. We will not be getting heavy with the physics and number crunching side of things here. We'll keep it practical and, hopefully useful. Let's go.

The naming of things

We have to start by establishing the meanings of the terms we will be using from here on in. Creating sound is all about finding new and interesting ways to shove air around. Here is an idealized illustration of what that might look like using a single pure tone.

Using this graphic we can identify some basic units and concepts in sound

waveform	a sine wave.
A cycle	The area between the vertical blue lines in the graphic is a single cycle of this wave. In this instance it starts at zero, rises to the highest point, drop back down to zero, continues to the lowest point and rises up to zero again. You can start a cycle at any point of the waveform. It doesn't have to start from zero. The main thing to remember is, if you choose any arbitrary point on the waveform to start from, when you reach that point again, so long as you are traveling in the same direction as you were when you left it, you have completed a single cycle. If you start the waveform at some other point that the one shown here (say, from the highest point on the graph) you have changed the phase of the waveform. It doesn't make it sound any different if you listen to the tone on its own but there are good reasons for being able to change the phase of a wave if you wish. We'll get to them soon.
Frequency	Describes the number of cycles in each second. It is measured in Hertz (Hz), one hertz being one cycle per second. If the frequency is in our hearing range we perceive it as the pitch of a note. The human hearing range falls roughly between 20Hz at the low end and about 20,000 Hz at the upper end. If you can hear much higher than that then your owner needs to get you a dog license. Human ears aren't very good at detecting pitch at the extremes of our hearing range but can be incredibly acute in the midranges.

Amplitude

Describes the range of upward and downward movement the waveform makes. We hear it as volume. Large amplitude values mean loud audio signals. Small ones mean quiet ones. If you reduce the amplitude of a wave you are said to attenuate it, if you increase it you are amplifying the signal. These amounts are typically measured in decibels (dB) which are a total pain to work with, mostly because they work to a negative logarithmic scale where minus infinity is the quietest point and zero is the point of optimal loudness. So we'll move quickly past.

In a wholly analogue system, like a Stratocaster plus a Marshall stack, amplifying a sound beyond that optimal point gives the desirable sort of distortion sound that has been putting food on guitarists' tables for years. No such luck with a digital system. In the digital world you cannot take the amplitude of a waveform beyond 0 dB. If you try, the wave looks like it hit a brick wall and sounds ghastly!

We mention this because putting sound into an amplifier is only one way of increasing its amplitude. Adding another sound source also increases the amplitude of the sound we hear. Which is why a full string section is louder that a solo violin.

In sound synthesis it is not uncommon to use several sound sources to create a single sound. The WAE has a built in limiter that manages sound levels internally for you to keep things out of the clipping zone. However, you will need to take some care of levels yourself if you want the best possible sound quality. A limiter working hard is often quite audible which might not be an effect you want to hear!

Zero

If you think about it, moving air around systematically involves both pushing it and pulling it blowing and

crossing

sucking. This is reflected in the graphic in that there is a line drawn through the center of the waveform. Amplitudes above the line have a positive value, those below have a negative one. In the jargon, audio signals are usually **bipolar**.

The point at which a waveform has an amplitude of zero is particularly important in sampling, something we will cover later. But the location of the zero crossing line has a significance in synthesis also.

For convenience, we show the zero line in the graphic as bisecting the waveform so there are equal amounts of waveform both above and below the line. Things don't always have to be this way and there are ways for us to move this line up or down. To do so, in the jargon once again, we apply a DC offset to the waveform.

As moving this line up or down will make no appreciable difference to the sound of the tone, why worry about it? If an audio signal is what you want, in truth it is not worth bothering with. But, if you want to use a waveform for something other than audio, like using one waveshape to control the parameters of a second then it can be very important. As we might find out later!

And that's about as much as we need to know about the components of a waveform. But there are a couple of other things we need to touch on to help understand how to synthesize sounds.

Fundamentals, harmonics and the rest.

If you play a note on any tuned musical instrument you will hear an astonishing complexity of sound. But, despite that complexity you will (hopefully) perceive a pitch. That's the **fundamental**. In all sounds that we perceive as pitched there is one frequency that stands out from all the other noises in there and this is the one the ear uses as the pitch reference.

A piano, violin and oboe sound totally different to each other but, if they all play note A4 you will hear three distinctive sounds all having a common fundamental frequency of 440 Hz or thereabouts.

If you listen more closely to the sound of a single instrument playing a single note, once you get past hearing the fundamental you will hear a range of other tones. Some of these work in a musical way and sound rather like chordal notes related to the fundamental. Others have a more uneasy relationship to the fundamental or are completely atonal.

The musical ones are **harmonics**. They sound musical because they have a very precise mathematical relationship with the fundamental frequency. The frequency of the harmonics are **always a whole number (integer) ratio** of the fundamental frequency.

Just to confuse matters slightly, the fundamental is also called the first harmonic. So, a tone with a fundamental frequency of 100Hz will have the second harmonic at 200Hz (an octave), the third at 300Hz (octave plus a fifth), the fourth at 400Hz (two octaves) and so on to the limits of our hearing.

The other sounds that you can hear are called **aharmonics**. These are frequencies that have a **non integer ratio** to the fundamental. When there are a lot of these present we tend to perceive the sound as clangorous or bell like.

If these three elements were all present in a sound in similar proportions we wouldn't hear a musical note at all. We would hear noise. So, to make musical sounds we need to find some way of establishing a balance between the fundamental, the harmonics and the aharmonics for any given frequency. And that's what synthesis is all about.

There are three major routes to doing this. One is that we can start off with basic sounds that are very rich in harmonics and then use a filter to reduce or remove the ones we don't want. Oddly enough, that is called subtractive synthesis.

We can also do the exact opposite. We can take very simple tones and add them together to create complex sound. Additive synthesis, surprisingly hard to do well.

The third route is a kind of middle way between these two. If the properties of one waveform can be used to vary those of another at audio frequencies, new and complex waveforms can be generated. You could call this synthesis by modulation. The most common methods used are amplitude modulation and frequency modulation.

In reality we mix and match, using elements from all three main routes as we need them.

Blocking it out

The components of most synthesizers can be categorized into four broad groups.

The first group could be called **sources**. These are the devices that produce the raw sound you will work with. The WAE allows you to use samples as sources as well as including some very well featured tone generators.

The next group we can call **modifiers.** Included here would be envelopes that shape the sound over time and filters that remove or emphasize certain frequencies.

The third group are **modulators**. They apply regular, repeated change over time to specific sound parameters. The most common of these is the low frequency oscillator, the LFO.

Finally there are the **effectors.** These are signal processing devices, reverberation modules, delays and so on. Usually they act at the end of the synthesis chain.

It is usual to define the output from modifiers and modulators as **control signals**; being as their usual job is to control the parameters of other devices in the synthesis chain. In the days of monster analogue modular synths it was considered sensible to use different colored patch cords for control signals to distinguish them from audio and other signals. When using the WAE it is also important to distinguish control signals from the audio path. We'll explain why in a moment.

For now, let's have a look at the first three device types in turn.

The right wave for the right job

Any self-respecting synthesizer will have a tone generator offering several basic waveforms as a starting point for sound creation. Why? What distinguishes one waveform from another? The answer lies in the harmonics on offer. So lets just quickly run through the more common waveforms and see what distinguishes one from the other.

Sine wave	Is a pure tone. It has no harmonics at all so there is not much point in applying a filter to one. Nothing to filter! This purity of tone make it very good for adding low end definition or kick to a bass sound. It is also good for additive synthesis where you don't want harmonics unless you put them there yourself. Put three or four of these waves together for an instant electronic organ type of sound.
Sawtooth	Is the most harmonically rich waveform in the box. Characteristically bright and buzzy. The starting point for thousands of classic synth sounds. A sawtooth wave has every harmonic present (theoretically) but their amplitude decreases from that of the fundamental by 1/the harmonic number. So the second harmonic is $\frac{1}{2}$ as loud as the fundamental, the third harmonic is $1/3$ as loud as the fundamental and so on until you hearing fails.
Triangle wave	Really just a sine wave straightened out. It doesn't have many harmonics and those that are present are quite high up. So, if you want hard and aggressive sounds this is not the wave to choose. Nice for flute sounds and soft leads though.
Square wave	A bit complex this one. A graph of a true square wave looks rather like a child's drawing of castle battlements. Square wave is a shorthand way of saying "pulse wave that spends as much time at the

highest point as it does at the lowest". In this form it has a sound that is usually described as "hollow". The reason is that every second harmonic is missing, there are only odd numbered harmonics present.

But this absence of even harmonics only holds true if the time between "high" and "low" in the cycle are the same. If the wave spends half of its time at the top the ratio between the high points and the low points of the waveform is 1:2 and, as we already know, every second harmonic is missing. If we change this ratio to 1:3 (i.e. the wave spends 33.3% of its time at the top) some of the missing harmonics return. We now only loose every third harmonic instead. If the ratio was 1:4 (25%) we would only loose every fourth harmonic. And so on.

If there was a way of shifting this ratio in real-time we would be able to hear these harmonics coming and going. We could call it pulse width modulation and use it to recreate classic synth string sounds, all kinds of shimmery pad like sounds and some unforgettable bass tones. Sounds like a plan!

Combination waves

Unsurprisingly, combination waves can have the characteristics of most of the above. The WAE includes one waveform that can be "morphed" from triangle to sawtooth to pulse wave. If you've followed us this far you should have realized that this gives you the option of tailoring the harmonic content of the waveform quite closely; a very powerful option indeed. Similarly, being able to change the shape of a wave in real-time can open the door to a whole new bag of sonic tricks. Pulse width modulation on steroids!

Envelopes

Envelopes give us a way of shaping a sound in time. Every synthesizer will always have at least one to control the amplitude of a signal. More sophisticated synthesizers will have several envelope generators which can be assigned to control other important parameters.

Envelopes are usually "one-shot" devices. An event triggers their start and, once underway, they transmit values that correspond to the envelope shape until they are done. They then do nothing until they are triggered again. Amplitude envelopes are usually triggered by the equivalent of a note being pressed on a keyboard.

Envelopes can be described by the stages they go through. The WAE amplitude envelope is a multi-stage envelope, having separate stages for **Attack** (how quickly the envelope moves from zero to maximum), **Hold** (how long it stays at the final attack level), **Decay** (how quickly the level falls to the..), **Sustain** (the lowest possible level during a note event) and **Release** (how long the sound will take to fall to zero from wherever it was when the note event stopped). There is a set of stages associated with when the note stops.

The control signals sent by the envelope unit in the WAE can be bipolar; i.e. the control signal value can be positive or negative. This has got some implications if you want to combine control signals from more than one device.

Say you want to combine the output from an envelope and a LFO to create a LFO that fades up or down. As these could both be bipolar signals, shoving them into an adding unit (a simple mixer) won't work as you expect. Adding a minus value to a positive one is subtraction by another name so doing this will result in periodic signal cancellations and other unexpected behavior

If you recall your basic grade maths, you'll remember that a negative (minus) value multiplied by a positive always gives a negative result. So, if you want to combine bipolar control signals, use a negative scaling factor on one or more of your control-rate junction input scale factors!

Filters

Amongst some synth nerds, filters can acquire a mythical status, becoming objects to be worshiped or argued about into the small hours. This is rather off-putting for the rest of us and obscures the fact that, from a users point of view, they are actually rather simple devices.

There are only four things you need to know about a filter; its shape, its slope, its cutoff point and whether it is resonant.

The shape is usually what gives the filter its name. So it is a safe bet that a low pass filter will allow low frequencies through and exclude higher ones. Similarly, a high pass filter will do the opposite. A band pass will allow through frequencies that fall into a certain range and a band reject will allow everything through except frequencies in the defined range. Nothing mysterious about that.

The cutoff point is the frequency at which the filter will start to do its stuff. So a low pass with a cutoff point of 600Hz will start to attenuate anything over 600Hz but leave all the lower frequencies alone.

The slope of a filter simply determines how sharp the attenuation will be. It is sometimes expressed in dB per octave and sometimes in "poles". The famous Moog filter had a 4 pole slope which equates to a reduction of 24dB per octave. If the earlier example of a 600Hz lowpass cutoff was a 4 pole type it would mean that, by the time we got to frequencies of 1200 Hz they would be attenuated by 24dB compared to the ones at 600Hz. This is quite a steep reduction and would leave very little audible signal by the time we got beyond 1500Hz. Something more gentle, like a 2 pole slope would only attenuate frequencies by 12dB per octave. So you would hear more of the higher harmonics.

Filter resonance (sometimes called Q for reasons that don't matter) is also pretty straightforward. All this does is emphasize the frequencies around the cutoff point. It is a kind of feedback loop. The higher the Q the more pronounced are the sounds at the cutoff frequency. On some old analogue synths you could crank this up so high that the only thing you could hear was the cutoff frequency so the filter would start to behave like an oscillator. This was called self-resonance. It is not so easy to do in a digital system.

And that's filters really. If they were fix and forget devices they would be little more than glorified tone controls. But, if we can use envelopes or LFO's to change the cutoff frequency or resonance in a dynamic way, then they are the heart of a subtractive synthesis system. Hence all the attention they get.

Modulators Part 1 Slow and gentle

We've made passing reference to it before but it is now time to get into some detail about modulation. It is a huge topic because there are so many possibilities. The skillful use of modulation techniques is probably the single most important factor in getting dynamic, expressive, musical sounds out of a synthesizer.

We'll start with a definition. In synthesis, modulation is the process of using one signal to apply regular, usually cyclical change to one or more parameters of a second signal. Lets look at a simple practical example.

A violinist often gives expression to a piece by adding vibrato. When he or she waggles their finger on the fretboard the net result is that they are making small regular changes to the fundamental frequency of the note they are currently playing. We can do exactly the same thing with our instruments.

To create vibrato on a synthesized voice we simply apply small regular, cyclical changes to the oscillator frequency. We do that by routing the output of one, low frequency (i.e. slow) oscillator to the frequency controls of the main, audio oscillator.

The change this will make depends upon the properties of the signal sent from the low frequency oscillator (LFO). And, when we use a LFO as a controller of other parameters, some things that are not important to the sound of a waveform become very relevant indeed.

There are five aspects to a LFO waveform that are important to consider; the actual shape of the wave, its frequency and amplitude, its phase and its DC offset.

Frequency and amplitude are quite easy to come to terms with. The higher the frequency of the LFO the more changes per second will be made. Amplitude is an interesting one. In our violin example, sending a 100% amplitude sine wave from the LFO to the tone generator frequency control would not give us vibrato. It would give us the sonic equivalent of seasickness. You use the amplitude controls of an LFO to determine how much change is to be applied. For vibrato, very small amplitudes around 3% will do fine.

It is useful to be able to visualize the wave shape of an LFO. If we are generating a sawtooth wave at audio frequencies then the direction of the sloping part of the wave is irrelevant to the sound. A wave that has a slope to the left sounds the same as one with a slope to the right. However, if we want to use an LFO to make gradual change to one parameter, then fall down to the beginning and start again, we would not want to use a waveform with a left facing slope. Visualize it!

Phase and DC offset are related to some degree. Lets consider phase first.

In the vibrato example, for the main oscillator to remain in tune we need the LFO to start from the zero crossing point. If it started at any other place it would automatically add something to the main oscillator and cause it to sound out of tune.

There might be other occasions when we want the effect that comes with starting the LFO at somewhere other than zero. In those circumstances we would adjust the phase to suit our purpose. Again, the best advice is to try to visualize what you want to achieve, then program it accordingly.

Finally there is the DC offset for the LFO. To go back to our violinist (for the last time, honest!) a vibrato effect that shifts the fundamental pitch up and down by equal amounts is not very natural sounding. It actually sounds far more realistic if we push the frequency in one predominant direction. The way to do this with an LFO is to shift the DC offset.

Think about it like this. The LFO is sending numerical values out to be added to the frequency of the main oscillator. As a bipolar signal with no DC offset, half of these values will be positive and half will be negative. Changing the DC offset will shift this balance. If we only want the vibrato to work up from the fundamental we would need to shift the zero crossing point right down so that the LFO sent out only positive values.

This can be hard to visualize just by applying a numerical offset value so the WAE makes it very easy by giving you an option to set the ratio between positive and negative values transmitted by the LFO using two sliders. Nice!

There is a catch to doing this though. If you change the DC offset it will obviously have a non-zero value. Less obviously, if you sent this DC offset LFO to the pitch control of another oscillator you will automatically add the DC offset value to it, taking the oscillator out of tune! So, if you are shifting DC offsets in this way you need to retune the destination oscillator to compensate.

Exactly the same principles apply when using LFO to modulate parameters other than oscillator frequency. We've mentioned how the harmonics present in a pulse wave change depending upon the pulse width ratio. If you route a slow LFO to modulate the width of a pulse wave type oscillator you get a rich shimmering sort of sound as harmonics come and go that has been the basis for synth string patches since forever. It also gives some astonishing bass sounds in the lower registers. Pulse width modulation was actually hardwired into the infamous Moog Taurus bass pedals so beloved by `70's prog-rockers.

Incidentally, if you are using an LFO to modulate pulse width you will need to attend to its amplitude. Too much modulation and you can get to the stage where there are no harmonics at all - not even the first one! Silence is not always golden.

Modulation by slow, sub-audio oscillators is not too difficult to get to grips with. But there is no rule that says that modulators always have to be inaudible. However, what happens when you crank the modulator signal up into the audio range can get pretty wild. One option is to use a device called a **Ring Modulator**.

With this device you simply take two sound sources and plug 'em into it. In effect what happens after that is that the first audio signal gets spliced with other signal at the frequency of that second signal. What you end up with is a new signal that consists of the sum and the difference of the two incoming signals. Which is OK if the two are pure sine waves. But if they have harmonics attached...:)

At low modulator speeds a ring modulator just chops up the sound in quite an obvious way. This was how they made the Daleks speak! But at high modulator speeds you can get all manner of crazy, unpredictable effects, especially if the modulator frequency is either fixed or changes in a way not related to the carrier. If you want one of those "car crash in a steel foundry" moments (and who doesn't) head for the ring modulator.

As we are talking about high speed modulation it is probably worth mentioning something that **isn't** going to work in the way you might think. At this point we need to get a bit technical about the workings of the WAE. Remember what we said about distinguishing control signals from audio signals? Here's why you need to do it.

The WAE is a digital synth (obviously!) so everything going on under the hood has to have a sample rate to work to. In order to save resources for the things that matter, the WAE gives absolute priority to rendering the audio signal at a reasonable sample rate, typically 22Khz on a modest PC. To save CPU time, all control signals are rendered at a very low sample rate. The default rate is 100Hz..

In most circumstances, this low sample rate isn't an issue. You don't need to hear the actual output of an LFO or envelope unit so there is no point in rendering it at CD quality when we can do better things with the resources available. However, it does mean that you can't just stick the output of one tone generator into the frequency control input of another because the (incoming) modulating signal will be interpreted as being a control signal and so will be capped at the control signal sample rate frequency.

Going granular

Granular synthesis is a relative newcomer as a synthesis method, mainly because the tools and processing power needed to do it easily haven't been readily available until recent times. As powerful computers tended to be in academic institutions it gathered a reputation for being "something for the boffins". While the underlying maths might be the stuff of nightmares, the concept of granular synthesis is dead easy. Here goes.

If you take a very small section out of a waveform (a few milliseconds at most), add an similarly small section of silence and loop play the result at audio frequencies you get an entirely new, and rather complex waveform. The audio content of this waveform will be determined by several different things; the size and content of the original mini sample (the grain), the length of the silence, the nature of the boundary between the two (is it abrupt or does it fade and by how much?) and the playback speed.

If you think about it, this is not a million miles away in principle from good old amplitude modulation. But then we take it to another level!

If you move away from using a single grain to using multiple grains, all with different frequencies, or if we modulate the grain size and/or the grain end cross-fades it all gets very strange. You very soon start to generate mutated, wholly original sounds that are not easy to achieve by other means. Which is what the buzz about granular synthesis is all about.

Now we wouldn't be telling you all this if there wasn't a way to do it with the WAE. One of the modules available is a "particle generator" and mainstream this is not! What this module does is generate up to twenty little bits of simple waveforms which are then used as the grains in creating a more complex overall sound. You control a range of the more useful and interesting parameters, most of which can be modulated by other the WAE modules.

What comes out of the business end of this module is not always predictable. It is very easy to get it to generate complex, untuned warbling or twinkling sounds. With a little more effort you can make some breathtaking, animated, tuned soft lead sounds. As it is hard to describe the indescribable the best way to learn about this little beastie is simply to play with it. Think about it as a hands on introduction to chaos theory!

A quick word about hybrid synthesis

The use of "real world" sounds instead of tone generators as the starting point for sound synthesis is hardly a new concept. But it wasn't until the 1980's and the development of affordable digital recording technology that the full potential of this could begin to be realized. The ability to process

and manipulate recorded sounds using the familiar shaping and modulating tools is a form of hybrid synthesis. The simplest implementation of this can be seen in most samplers which basically slap a subtractive synthesis engine onto a digital sample playback device. You can do this with the WAE, no problem. And we will. Later.

But that is more than enough background for this tutorial. We can now take this knowledge forward with us and explore the WAE in more practical terms by starting to build our own instruments within the WAE.

Synth Tutorial 2

Working with the WAE Modular Synthesizer

Launch the Synth & FX Editor. This is the place where you activate and program the WAE ... and where MIDI sound creation for the Intermorphic Sound System (ISS) gets very interesting!

Note that the audio plugin framework that underpins the WAE is an open framework, and has been designed to allow 3rd party developers to create application UIs into which they can plug in their own or other 3rd party sound processing modules, including support for the Intermorphic modules if so required.

When you start using the WAE for a MIDI line, what you have is an independent, non-midi, polyphonic synthesizer The sound generation limitations of MIDI pretty much go out of the window.

The WAE is no lightweight. It has a degree of flexibility that is comparable to the old, monster modular synths. It includes some features that are seldom seen, even on very expensive, "famous name" hardware synths. Inevitably, something so well featured and flexible isn't able to hide its complexity too well so there will be a bit of a learning curve to negotiate if you are going to be able to harness this power in a creative way. This tutorial aims to help you up along that curve.

We won't be creating full pieces of music in this tutorial; instead, we'll concentrate on programming sounds using the WAE.

The Path

To get the best from any synthesizer you really need to have some understanding of the path the various signals take inside it. If you have had some experience of hardware synths you will probably be used to imagining a left to right signal path, with the sound generating oscillators at left hand side and the sound output stage at the far right. The WAE signal path pretty much follows this convention...

It is here, in the Synth Network Editor, that we design the sound for the selected MIDI line. As you add synth units to your sound design, they appear as boxes in the bottom part of the dialog. We sometimes refer to these units as "slots"; you can have as many "slots" as you want, where you insert the various modules and units that, together, will make your synthesizer module. The sound you eventually hear will come **only** from the audio-rate unit in the rightmost slot. So, if you were to construct the simplest of synthesizers, using one tone generator and a LFO, you would have to put the tone generator in a slot somewhere to the right of the LFO. Put them the other way round and, if it was fast enough, all you would hear would be the LFO!

With the proviso that the sound comes out of the right most unit, the signal-flow is pretty strict in terms of left-right ordering. Signals from one module can only ever be passed to modules that are to the right of it in the design. In practice you must put control-rate units (your controllers and shapers, such as envelopes and LFOs) sound BEFORE the sound generating modules (i.e. before your tone generators). So, if you want to use an envelope to control the output from a LFO, you'll have to put the envelope to the left of the LFO. This does of course help you keep a handle on what your signal path is doing. With practice, you won't be confused.

Control signals are different.

Says it all really.

The WAE makes an important distinction between audio signals and control signals. Here's how it works.

Most signals in the system are "audio-rate" signals; they are rendered at whatever sample rate the platform is running at, for example 22Khz.

The **only** signals that can be used to modulate parameters of a synth unit (e.g. to amplitude or wave shape) are control-rate signals, that must come from a control-rate unit. To save CPU resources for the things that matter, control signals are rendered at a very low sample rate; typically 100Hz. So, if you try to modulate a parameters between units at audio frequencies the best you are going to get is 100Hz. This is not going to be good enough for specialized applications such as FM synthesis!

The reason that we do this, is that it saves a lot of CPU horsepower; to render subsonic waveforms at near CD quality would be pretty pointless. You don't want or need to hear the direct output of an envelope unit or a slow LFO.

On tuning

A fixed architecture synthesizer with limited flexibility can hide a lot of things from the end user. Because the WAE has been designed for flexibility it is up to you to take care of some of the details to make sure that the results you get are the results you expect. This is particularly the case when making sure your MIDI line is in tune with the others in a piece.

The thing that is most likely to catch you out is when you use a LFO to modulate the frequency of a tone generator. If you use the LFO with most of its settings at the default there will not be a problem. However, if you adjust the min or max value sliders you will have a tuning problem that will need correction. Why?

If you recall in the synthesis tutorial, we said that changing these values was the same as applying a DC offset to the LFO wave, i.e. the zero crossing line has a non-zero value! So, if you route a LFO that has been shifted in this way to the frequency of another oscillator you are, in effect sending two values. One is the LFO amplitude, which will change over time and the other is the DC offset which is a constant. This DC offset will have to be allowed for by adjusting the pitch of the sound generating oscillator to get it back into tune.

So, if you have an out of tune MIDI line, check what is modulating the frequency!

Polyphony - a word about resources

All soft synths are serious processor hogs. A lot of effort has gone into minimizing the hit that the WAE will make on your processor but you can't cheat physics. Making complex sounds in realtime means doing hard sums very fast and there will be a limit to the strain your CPU can take.

Note: The polyphony a synth will play with the Polyphony ("Poly") setting in the Synth Editor. Note: This setting does not display in FX Networks which

have no concept of polyphony.

Tips

- If your piece can use built-in wavetable (e.g. for basic drum sounds), or custom audio samples, then consider using them where possible rather than the modular synth. Remember that sample-based drum sounds can be very effective.
- Very importantly, use a polyphony value that is as small as your piece can get away with!
- If you wish any FX to apply to all Cells in a Track, to save processing cycles put them in Track FX (see the Synth & FX Editor) rather than directly in your synth module design.
- Be economical with units. Think about ways in which you can maybe use one unit more than once in a voice.

Finally, a word about polyphony. With the WAE, each MIDI line can become an independent, polyphonic synthesizer.

But rather than always thinking of the WAE as a polyphonic synthesizer, you can think also think about it as a synthesizer that can have multiple instances of a Synth Network. If you set the "Poly" parameter to 2 or more, what the WAE does is create the corresponding number of **identical** synth networks that can operate simultaneously, one for each possible note. So, setting your "Poly" parameter high is an excellent way to use up your processor resources - which you will want to try to conserve. Use it with care.

OK, enough of the preliminaries. Lets get on with making some sounds. The terminology and concepts we will be using will assume you are up to speed!

Simple subtractive synthesis

This is how to set up the WAE as a simple two oscillator synth in the classic style. We'll go through this in some detail because, once you have got the principles of the WAE established, working in more adventurous ways gets much, much easier.

Firstly, we need to create a piece. From Wotja create an new mix (Menu >

New) and from the popup Template list Scheme (Pak) > Ambient. You will then have a mix or piece that will play long notes. Save this piece as "MyTest".

Launch the Synth Network Editor and set the poly to be 1 or more. Once you set a tone generator in your synth module design, this will then override any MIDI patch settings that your piece is using.

So: we need to design the module that our MIDI line will use. As we are going to make a classic kind of synth we will need two tone generators, a filter and an envelope to control it.

Add the following by tapping on a blank area in the Synth Network: Unit 1 - "Ctrl-Envelope", Unit 2 - "TG Oscillator"; Unit 3 - "TG Oscillator"; Unit 4 - "Filter".

Using an Audio-rate Junction

Hold on - the filter is only fed from the output from the unit immediately before it; and what we really want is to feed the filter with the combined outputs from units 2 and 3! To do this, we need to route the two tone generators into the filter unit. How we do that is fundamental to getting the WAE to work for you!

Tap/hold Unit 4 (the Filter) and press the "Add Before" button and then select a "Junction"; your Filter is now moved to become unit 5! When the Junction Unit is selected, in the bottom Connector & Controllers area tap the Add button twice. Make sure that the first input item of the two inputs you've just added comes from Unit 2 (the first tone generator), and make sure that the second of the two inputs comes from Unit 3 (the second tone generator). You can set relative scaling factors for the two input units by playing with the scaling factors.

Here is the text that we get if we now press the "Export" button on the synth module editor window (we could subsequently reimport this if we need to by highlighting the text, copying it and pressing the "Import" button):

```
<unit t="tg/osc"/>
<unit t="tg/osc"/>
<unit t="j" i="2,1.;3,1."/>
<unit t="filter"/>
</fxm>
```

The audio-rate junction you've just added takes the the signals from the two tone generators, and adds them together. The output from your audio-rate junction automatically feeds the filter unit to its right.

OK, that's the network built. Now lets fine-tune our settings.

Tap unit 2 to display the Oscillator Unit. There is a list control where you can select the wave shape for this tone generator. We want a saw wave. The direction of the slope isn't relevant. Close unit 2, then tap unit 3 to display the second Oscillator Unit.

Select a sawtooth wave for the second tone generator. Please make sure its direction is the same as its twin in unit 2 or else they will cancel each other out and you won't hear much! :)

To make a big sound, set one of the tone generators to work an octave lower than the other. You can do this with the one in Unit 2 by setting the Octave offset to 1.

Once you've done all that, tap unit 5 (the filter) to open the Filter Unit. Set the filter type to "low pass" and adjust the cutoff frequency and Q (resonance) to taste. The filter will automatically sweep unless you tell it otherwise.

Here's what the exported module now looks like:

```
<fxm> <unit t="c/envelope" r="c"/> <unit t="tg/osc"p="1280=2;1287=1;1030=</pre>
```

Next, lets use the control-rate envelope (unit 1) to modulate the frequency of our first tone generator (unit 2). Select unit 2, and and in the bottom "Connectors & Controllers" area add a controller by pressing the "Add" button. Set the source Unit to be unit 1 (our envelope), and set the Param(eter) to be Frequency. Your envelope will now be modulating the frequency of your LFO! Use the Scale slider to adjust the amount of

modulation. Select unit 1 if you want to modify the shape of your envelope.

Note that the envelope editor display might look a bit complex to start with, but it it's not really. It can be used to send out negative as well as positive values (it is bipolar!).

For example, you might want an envelope shape that rises slowly to a maximum, falls down to a low level rather slowly and tails off to nothing once the note has ended. So you could set the attack time to around 5 seconds, the decay time to just less than 4, a very low sustain level and a release time of half a second.

Once you have an envelope shape you like it is then just a matter of playing around with things until you get the exact sound you want. Note that you can also use control-rate LFOs to modulate parameters; and many units have a large range of parameters that you can experiment with modulating.

Anyways, back to our example: you should hear a more familiar, if rather overused, sound. If you go back to one of the tone generators and tweak the "Micro Offset" value a bit you will find that fattens up the sound nicely.

For a final touch you might want to add some reverb. This is best done by using it as a global effect for the entire piece because you might have several voices that you want to treat similarly.

If you close the Synth Network Editor you'll be back to the main application window. Press the "Global FX" button to open the FX Network Editor. This looks and works just like the Synth Network Editor you saw before, but this is now being used to edit global FX for the entire piece. Make sure to add an FX of type "reverb", and change the settings in the unit to get the sound you want. Then, close the Unit.

And there we have it. One classic, filter swept pad in the traditional subtractive style. Easy!

Now we have a sound that works it is a good idea to save it for use in other pieces. As noted above, you can export & import data directly via the clipboard and a text editor at various levels of the tool; this makes copying sounds around from piece-to-piece very easy.

If we export the settings from the Synth Network Editor the text should look something like this (depending on exactly what you did!). We need this by the way for our next tutorial step.

```
<fxm><unit t="c/envelope" r="c"/><unit t="tg/osc" p="1280=2;1287=1;1030=1
```

Waveshaping

This sounds similar in some ways to Voice 1. But this time, instead of using a filter module to remove harmonics and animate the sound we will use an envelope to change the waveform shape over the duration of each note.

If you recall some of the things we covered in the previous tutorial you will realize that changing the waveshape will change the harmonic content of the sound. And, if we get it right, we'll end up with something that sounds like a traditional filter sweep without the CPU hit that the filter involves. So, really, we are almost using additive methods to make this sound. And it is more economical. Great!

Go back your piece above and open it.

Select the filter unit and press the Delete button to remove it. The last unit is now the audio-rate junction unit, which just adds the two tone generators together.

Open up the Editors for the two tone generators. Change the wave type for each of them to STS. You'll notice that you get some interesting control sliders for this wave type.

Here is the synth module definition at this stage:

```
<fxm><unit t="c/envelope" r="c"/><unit t="tg/osc" p="1280=5;1283=41.;1284
```

It may not sound that interesting so far, but the STS wave is one of the quietly outstanding features of the WAE. If you couple that with modulation, and keep going, you will see why. The three parameters, controlling the up/down ratio, squareness and slope give you the capacity to morph a waveshape.

It might be a good idea to set up a simple voice just using this waveshape in a single tone generator and play around with the sliders to get the feel for what you can do with this. Basically, if you set the up/down to 100%, squareness to zero and right/left% to either 100% or zero you will hear a sawtooth wave. If you now move the right/left slider towards the center you will hear the sound mellow until, at 50%, you get a triangle wave. Now move the squareness slider and you hear the sound harden again as the wave become more pulse like. We already know that changing the up/down ratio of a square wave (the duty cycle) will change the harmonic character in other ways. Check it out!

So, by varying these three parameters in different ways in real time you can generate some excellent harmonic changes without resorting to a filter. Lets do it!

We don't need to change the current Envelope settings, but you can play with this if you like. But we **do** want to route the envelope controller (unit 1) to the appropriate destination!

In the bottom Connectors & Controllers area, for both units 2 and 3, add a controller from unit 1. Ensure that this new controller is used to modulate the Up/Down Ratio parameter. Now do this again, adding new controllers, but this time to use unit 1 to also modulate the Squareness Ratio. Then do this again for the Slant ratio!!

As this is the "suck it and see" school of synthesis, the next bit is down to you and your ears. Hit play and adjust the settings levels on these parameters, the envelop and the scale factors)until you get a sound you like. You'll find that if you overdo the levels you can flatten the waveshape out and lose the sound altogether.

Here is the synth module definition at this stage (it is worth a listen):

```
<fra><unit t="c/envelope" r="c" p="1042=0;1044=0;1046=4168"/><unit t="tg/
```

It shouldn't take you too long to find settings that sound like the filter sweep we created in the first example. If you check this sound with the one from the first example with a Filter Unit you'll find that this approach actually gives you a greater range of harmonics than using a simple filter. The sound will tend to be richer and brighter, sitting up in the mix more perhaps.

Gentle Ring Modulation

We can use the ring modulator mode of the "osc" unit to give some quite pleasant quality tones that are very similar to those you get from basic amplitude modulation. The key is to make sure that both the tone generators track the pitch of the composed notes.

A ring modulator has to have two inputs for you to hear anything. If you just load up the ring modulator on its own you'll hear nothing. The WAE oscillator use the internal oscillator as one permanent input. All you need to do is route another source into the ring modulator and off you go.

Change one of your modules such that it is one "osc" unit followed by another "osc" unit. Be sure to check the "ring-modulate?" checkbox on the second unit; verify that the "Use MIDI Notes?" checkbox is also checked.

If you play with the various oscillator parameters you'll discover that the harmonic content of the sound generated depends mostly on how far apart the two tones being modulated are.

Ring Modulated weirdness

Go back to your Ring Modulating unit. Uncheck the "Use MIDI notes".

What you get is a weird, metallic noise! The quality of the noise will depend upon the relationship between the frequency coming in from the tone generator and that of the oscillator in the ring modulator. Adjust this frequency until you get a cleaner, bell like tone. It should be somewhere around 700 Hz.

If you want things to get dafter, add a control-rate LFO "(c/lfo") to modulate the ring modulator's oscillator frequency. Try this. Add a control-rate lfo ("c/lfo") as the first unit. Set the wave type of this LFO to Random and the type to Step. Set the frequency to 2 Hz. Now add this unit as a modulator controller of the ring modulator frequency. Hit play! :)

What you should be getting now is weird, randomized electronic chime

noises that change every half second. Strange, isn't it?

You can use SF2 samples as the source as well as another WAE module so you can do ring mod sound warping to your own samples in realtime. And who wouldn't want to do that?

Particles. Making ring modulation look ordinary

Now if you thought ring modulated noises were strange, check out this option. As an alternative to a comprehensive tone generator module, the WAE includes the Particle generator.

The concept is based on granular synthesis. This module generates little wavelets of sound punctuated by little sections of silence. With careful control of the comprehensive set of parameters on offer you can generate the most unworldly sounds.

A little alert before we start. This module does a lot of maths! Don't overuse it in a piece or there won't be much processor time left for anything else.

We'll use it to create an Sci-fi movie background music sort of thing.

Open the "MyTest" mix/piece you created above, and delete the Synth Network you made. Add a Particle Unit as your only unit for MIDI line 1. And that's it! :)

Well, not really. The difficulty now is that this all gets very subjective and rather hard to write about. You just need to hit play and then adjust the many parameters on offer in the Particle module until you get a sound you like. So instead lets just check out the key variables.

The harmonic parameter is one of the most influential factors on the end sound. Low values will keep the base frequency of wavelets close to each other. Larger values will mean much greater differences between individual wavelets and a much wider harmonic range to the sound.

Frequency velocity is like a mini pitch envelope applied to each wavelet. Small values give nice detunes and sweeps. Larger values can cause queasiness!

The attack, sustain and decay parameters are like a mini amplitude

envelope for each wavelet. Small values make each wavelet distinct and

audible. Larger values will cause a smearing and blending of the sounds which is not unpleasant.

Pause governs the time between each wavelet.

The "Number of Elements" value sets the number of wavelets to be generated. Set this lower and reduce the processor hit for this module.

You will hopefully have noticed that every parameter can be modulated by another unit, so there is plenty of scope to sculpt some quite unique and complex pieces with this little baby!

This is just one kind of the strange little things you can get out of it (it is worth a listen):

```
<fxm><unit t="tg/particle" p="1280=1046;1281=.297;1282=.175;1283=.379;128</pre>
```

DSynth - The Drum Synthesizer

This one is a little bit different because, with this beast, you can achieve so much. So some explanation is in order first.

To make decent percussive sounds using a modular synthesizer takes quite a few modules, most of which would be rather over specified for the task to hand. Such an approach would waste a lot of computational resources. So we took a different path.

The drum synth module incorporates just the tools you need to create a huge range of tuned and untuned percussive sounds with no waste. It looks a bit complex at first sight because it packs a lot into a small area of screen but once you get the hang of it you'll love it.

The module incorporates three tone generators – two generate sine waves, one generates colored noise. The noise generator has a multi-type resonant filter. Each tone generator has its own simple attack/decay envelope that controls the amplitude. This envelope can also be routed to control pitch in the case of the sine wave generators and the filter cutoff frequency for the noise generator.

The cutout of the three generators is added together so you central the mix 92/97

between them using the envelope level parameter. A word of warning – this module has been designed to kick - it goes loud.

One sine wave generator is designated the master and can be set to any frequency from the low 40's to about 900 Hz. The other sine wave generator slaves to this frequency, i.e. its setting is a ratio of the frequency of the first one. We do this mostly to save CPU resources (the slave oscillator's maths are slightly less taxing)

One thing worth noting is that the two sine wave generators can cross-modulate the other's frequency. What's the point of this?

Well, using the output of one sine wave generator to modulate the frequency of the other will give some metallic-like tones. It is called frequency modulation synthesis. Exactly how metallic will depend upon the difference between the frequencies of the two generators and on the depth of the modulation.

If you then take that modulated output and make a loop so it modulates the frequency of the first tone generator (modulate the modulator as it were!) then the results can get even more harsh and chaotic. At high modulation depths this is just what you need to start to create struck metal percussive effects. Lower depth values will dirty up drum sounds for you rather nicely.

You can force this module to track composed note values. There are loads of possible uses of this feature. The obvious one is to get several percussion instruments for the price of one. If you want to set up an alternating high/low cowbell figure simply load up the relevant preset, enable note tracking on this module and set up a pitched fixed voice type or something similar to take care of the tuning. You can also create a whole battery of tuned percussive instruments; marimbas, bells by using this option.

Enjoy!

And that just about concludes this quick jaunt through the practical application of the WAE. We've really just scratched the surface but hopefully you have collected enough pointers from this and the previous tutorial to make your own way from here.

External Links

• Video Synthesis Tutorial

Glossary

Tone Generator (TG) Unit: A unit that knows how to generate sound in response to MIDI note events. These are the Wavetable, DSynth, Oscillator and Particle units. You can have as many TG Units in your design as you want, subject to the processing power of your target platform.

FX Unit: An audio processing stage which can be used to perform a variety of exciting things. You can have as many FX Units in your design as you want, subject to the processing power of your target platform.

Synth / FX Network: A grouping of all units used by a particular Synth or FX (Global FX or Track FX). Think of it in terms of a row of audio-rate units that work from left-to-right.

Audio-Rate Unit: An unit that works at the normal audio processing rate of the system, e.g. Wavetable Unit.

Control-Rate (Ctrl) Unit: A unit that works at a lower rate than the normal audio processing units and is used to control parameters on other units. These are the Ctrl-LFO, Ctrl-Envelope and Ctrl-Amp units.

LFO: Low Frequency Oscillator. The Ctr-LFO Unit can be used to control other effects unit parameters such as filter cutoff frequency or perform pitch modulation. The audio-rate LFO (Osc) can be used as a direct frequency generator, or to apply Ring Modulation effects if run at a low enough frequency.

Envelope: A Control-Rate Unit that creates a waveform in direct response to a note on MIDI event; used to modulate various critical parameters within audio-rate or control-rate Units. For example, envelopes are used to shape the volume of a note when it is triggered, and can also be used for all sorts of neat effects such as modulating the pitch of a note while it plays.

© 1990-2024 Intermorphic Ltd. All Rights Reserved. Subject to Change. E & OE. See also Credits.

• Intermorphic

Intermorphic ☐ is a brother team with a 30+ year passion for developing powerful generative music apps, engines & tools.

We ♥ our customers and ♥ making apps to help aid creativity & relaxation.

Wotja Docs

App Wotja User Guide

Downloads Music Engine (WME)

Help & FAQs Audio Engine (WAE)

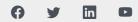
Tutorials Script Engine (WSE)

Add-on Paks Wotja Pak Maker

News & Blog Other

News Contact Us

Blog > Posts T-Shirts etc.


Press > Releases About Us ☐

Press > Resources SSEYO Koan ☐

☐ News Archive 🗹 ☐ App Archive 🗹

© 1990-2024 Intermorphic <a> Intermorphi

Privacy Policy | Terms of Use | Wotja EULA | Sitemap

